Glass Forming Ability and Relaxation Behavior of Zr Based Metallic Glasses


Book Description

Metallic glasses can be considered for many commercial applications because of the higher mechanical strength, corrosion and wear resistance when compared to crystalline materials. To consider them for novel applications, the challenge of preparing metallic glasses from the liquid melt phase and how the properties of metallic glasses change due to relaxation need to be understood better. The glass forming ability (GFA) with variation in composition and inclusion of different alloying elements was studied by using thermal techniques to determine important GFA indicators for Zr-based bulk metallic glasses (BMG). The effect of alloying elements, annealing temperature and annealing time on the thermal and structural relaxation of the BMGs was studied by using an annealing induced relaxation approach. The thermal relaxation was studied by measuring specific heat of the samples using differential scanning calorimeter (DSC) and calculating the enthalpy recovery on reheating in the BMG samples. The structural relaxation was also studied by using extended X-ray absorption fine structure (EXAFS) technique on the as-obtained and relaxed samples. The effects of alloying elements and annealing on electrical resistance were studied by using a two point probe. From the study, it was found that the currently used GFA indicators are inadequate to fully capture and identify the best GFA BMGs. The fragility (beta) of the melt is a new criterion that has been proposed to measure and analyze GFA. The enthalpy relaxation of Zrbased BMGs was found to follow a stretched exponential function, and the parameters obtained showed the BMGs used in the current study are strong glass formers. EXAFS studies showed variations in the structure of BMGs with changes in alloying elements. Furthermore, alloying elements were found to have an effect on the structure of the relaxed BMGs. The resistance of BMGs was found to decrease with relaxation which can be attributed to short range order on annealing.




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Mechanical Behavior of Zr-Based Metallic Glasses and Their Nanocomposites


Book Description

In the present chapter, results of our recent investigations on the role of gallium (Ga) on the aluminum (Al) site in Zr69.5Al7.5-xGaxCu12Ni11 metallic glass (MG) composition have been discussed. The material tailoring and cooling rate effects on the mechanical behavior of Zr-based metallic glasses and their nanocomposites have been studied. The substitution of Ga on the Al site in Zr-Al-Cu-Ni alloy affects the nucleation and growth characteristics of quasicrystals (QCs) and consequently changes the morphology of nanoquasicrystals. The Zr69.5Al7.5-xGaxCu12Ni11 system displayed metallic glass formation in the range of x = 0-7.5. In this process, we have come out with a new glass composition; Zr-Ga-Cu-Ni with glass transition temperature (Tg)-614 K. The effect of cooling rate on the glass forming ability (GFA) and mechanical properties for this new metallic glass composition has been discussed and compared with some other Zr-based metallic glasses. The various indentation parameters such as microhardness, yield strength, strain hardening constant, nature of shear band formation, and so on for the alloys have been analyzed. The study is focused on investigations of these materials to understand the structure (microstructure) property correlations.




Bulk Metallic Glasses


Book Description

In spite of the large amount of research activity in this subfield of materials science and engineering, there is no single book available that provides background information, methods of synthesis, characterization procedures, properties, and potential and existing applications.of bulk metallic glasses. Written in an easy-to-understand style by pioneering researchers in this field, Bulk Metallic Glasses is one of the first books to coherently discuss the synthesis, processing, properties, and applications of these unique materials. The book explores the differences between nanocrystalline, glassy, and amorphous solids as well as the thermodynamics and kinetics and various processing methods of glass formation. It critically compares the different criteria for glass formation, describes the advantages and limitations of experimental methods for synthesizing bulk metallic glasses in assorted sizes and shapes, and examines the kinetics of crystallization/devitrification and the mechanisms of transformations. It also covers the density, diffusivity, thermal expansion, electrical resistivity, specific heat, viscosity, corrosion resistance, mechanical behavior, and magnetic properties of bulk metallic glasses. After presenting a wide array of applications, the book concludes with a discussion on the future of these materials. The adoption of bulk metallic glasses into existing systems is besieged by many obstacles but due to their interesting combination of properties, future applications may be unlimited. A one-stop resource on all aspects of bulk metallic glasses, this book demonstrates the immense potential of these novel materials. It clearly elucidates the background, detailed methods of synthesis and characterization, structure, and properties of bulk metallic glasses.




Metallic Glasses


Book Description

Metallic glasses and amorphous materials have attracted much more attention in the last two decades. A noncrystalline solid produced by continuous cooling from the liquid state is known as a glass. From the other point of view, a noncrystalline material, obtained by any other process, for example, vapor deposition or solid-state processing methods such as mechanical alloying, but not directly from the liquid state, is referred to as an amorphous material. At this moment, bulk metallic glasses (BMG) are appearing as a new class of metallic materials with unique physical and mechanical properties for structural and functional usage. Extreme values of strength, fracture toughness, magnetic properties, corrosion resistance, and other properties have been registered in BMG materials.




Metallic Glasses and Their Composites


Book Description

Metallic glasses and their crystal/glass composites find ever more applications in such fields as mini transformers, microelectromechanical devices, pressure sensors, precision surgical instruments, biological implants and sportive goods (springs, diaphragms, membranes, knife blades, electromagnetic wave shields, optical mirrors, power inductors, Coriolis flow meters, etc.). The book reviews recent research and suggests future developments, e.g. in the area of dual-phase composite/hybrid materials. Keywords: Metallic Glasses, Crystal/Glass Composites, Dual-phase Composite/Hybrid Materials, Supercooled Liquid, Devitrification, Magnetic Materials, Microelectromechanical Devices, Pressure Sensors, Orthopedic Screws, Precision Instruments, Biological Implants, Electromagnetic Wave Shields, Optical Mirrors, Power Inductors, Coriolis Flow Meters.




Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just Below Glass Transition


Book Description

In this paper, the [alpha]-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The [alpha]-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, [Phi] (t) H"exp [- (t/[tau] [alpha])[beta] [alpha]], with the isothermal relaxation time, [tau][alpha], and the Kohlrausch exponent, [beta][alpha]. The [beta][alpha] exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The [tau][alpha]'s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods that reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.




Metallic Glasses and Their Composites


Book Description

Metallic glasses and their crystal/glass composites find ever more applications in such fields as mini transformers, microelectromechanical devices, pressure sensors, precision surgical instruments, biological implants and sportive goods (springs, diaphragms, membranes, knife blades, electromagnetic wave shields, optical mirrors, power inductors, Coriolis flow meters, etc.). The book reviews recent research and suggests future developments, e.g. in the area of dual-phase composite/hybrid materials. Keywords: Metallic Glasses, Crystal/Glass Composites, Dual-phase Composite/Hybrid Materials, Supercooled Liquid, Devitrification, Magnetic Materials, Microelectromechanical Devices, Pressure Sensors, Orthopedic Screws, Precision Instruments, Biological Implants, Electromagnetic Wave Shields, Optical Mirrors, Power Inductors, Coriolis Flow Meters.




Bulk Metallic Glasses


Book Description

In spite of the large amount of research activity in this subfield of materials science and engineering, there is no single book available that provides background information, methods of synthesis, characterization procedures, properties, and potential and existing applications.of bulk metallic glasses. Written in an easy-to-understand style by pioneering researchers in this field, Bulk Metallic Glasses is one of the first books to coherently discuss the synthesis, processing, properties, and applications of these unique materials. The book explores the differences between nanocrystalline, glassy, and amorphous solids as well as the thermodynamics and kinetics and various processing methods of glass formation. It critically compares the different criteria for glass formation, describes the advantages and limitations of experimental methods for synthesizing bulk metallic glasses in assorted sizes and shapes, and examines the kinetics of crystallization/devitrification and the mechanisms of transformations. It also covers the density, diffusivity, thermal expansion, electrical resistivity, specific heat, viscosity, corrosion resistance, mechanical behavior, and magnetic properties of bulk metallic glasses. After presenting a wide array of applications, the book concludes with a discussion on the future of these materials. The adoption of bulk metallic glasses into existing systems is besieged by many obstacles but due to their interesting combination of properties, future applications may be unlimited. A one-stop resource on all aspects of bulk metallic glasses, this book demonstrates the immense potential of these novel materials. It clearly elucidates the background, detailed methods of synthesis and characterization, structure, and properties of bulk metallic glasses.




Metallic Glasses and Their Composites


Book Description

The formation of metallic glasses and dual-phase composite/hybrid materials is reviewed, as well as the glass transition process and the resulting structural phenomena. These materials exhibit high strength, extreme hardness, good wear resistance and large elastic deformation. Due to their excellent structural, functional, magnetic, chemical and biological properties metallic glasses are suitable for a great many applications, including in such areas as microelectromechanical devices, pressure sensors, orthopaedic screws and precision surgical instruments. Metallic Glasses, Metallic Glass Composites, Crystal/Glass Transition, Nano-Crystallization, Phase Separations, Supercooled Liquids, Glassy Nanocomposites, Nanoscale Quasicrystals, Mechanical Properties, Nanoscale Wear Resistance, Bauschinger Effect, Cryogenic Temperature, Porous Glasses, Nanocomposite Alloys, Soft Magnetic Alloys, Hard Magnetic Alloys, Magnetocaloric Effect, Corrosion Resistant Alloys, Surface Oxides, Catalysts