Global Analysis - Studies and Applications V


Book Description

This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm maps of non-negativeindex and its applications to global bifurcation of solutions.- A.A. Bolibruch: Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem.- I.V. Bronstein, A.Ya. Kopanskii: Finitely smooth normal forms of vector fields in the vicinity of a rest point.- B.D. Gel'man: Generalized degree of multi-valued mappings.- G.N. Khimshiashvili: On Fredholmian aspects of linear transmission problems.- A.S. Mishchenko: Stationary solutions of nonlinear stochastic equations.- B.Yu. Sternin, V.E. Shatalov: Continuation of solutions to elliptic equations and localisation of singularities.- V.G. Zvyagin, V.T. Dmitrienko: Properness of nonlinear elliptic differential operators in H|lder spaces.







Topology and Its Applications


Book Description

The Proceedings of an international topology conference - this book covrs various aspects of general algebraic, and low-dimensional topology.




Explicit Formulas


Book Description

The theory of explicit formulas for regularized products and series forms a natural continuation of the analytic theory developed in LNM 1564. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions which are Gaussian transforms of theta series rather than Mellin transforms, and satisfy additive functional equations. Their wide range of applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example.




Lie Algebras and Lie Groups


Book Description

The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I.I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal, . This part has been written with the help of F. Raggi and J. Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x, y) under this map by [x, y) then the condition becomes for all x e k. [x, x)=0 2). (lx, II], z]+ny, z), x) + ([z, xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/, x).




New Integrals


Book Description







Stochastic Analysis


Book Description

Annotation Contents: G. Benarous: Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne.- M. Fukushima: On two Classes of Smooth Measures for Symmetric Markov Processes.- T. Funaki: The Hydrodynamical Limit for Scalar Ginzburg-Landau Model on R.- N. Ikeda, S. Kusuoka: Short time Asymptotics for Fundamental Solutions of Diffusion Equations.- K. Ito: Malliavin Calculus on a Segal Space.- Y. Kasahara, M. Maejima: Weak Convergence of Functionals of Point Processes on Rd.- Y. Katznelson, P. Malliavin: Image des Points critiques d'une application régulière.- S. Kusuoka: Degree Theorem in Certain Wiener Riemannian Manifolds.- R. Leandre: Applications quantitatives et géométrique du calcul de Malliavin.- Y. Le Jan: On the Fock Space Representation of Occupations Times for non Reversible Markov Processes.- M. Metivier, M. Viot: On Weak Solutions of Stochastic Partial Differential Equations.- P.A. Meyer: Une remarque sur les Chaos de Wiener.- H. Tanaka: Limit Theorem for One-Dimensional Diffusion Process in Brownian Environment.- H. Uemura, S. Watanabe: Diffusion Processes and Heat Kernels on Certain Nilpotent Groups.




The 21st Hilbert Problem for Linear Fuchsian Systems


Book Description

Bolibrukh presents the negative solution of Hilbert's twenty-first problem for linear Fuchsian systems of differential equations. Methods developed by Bolibrukh in solving this problem are then applied to the study of scalar Fuchsian equations and systems with regular singular points on the Riemmann sphere.




Algebraic Cycles and Hodge Theory


Book Description

The main goal of the CIME Summer School on "Algebraic Cycles and Hodge Theory" has been to gather the most active mathematicians in this area to make the point on the present state of the art. Thus the papers included in the proceedings are surveys and notes on the most important topics of this area of research. They include infinitesimal methods in Hodge theory; algebraic cycles and algebraic aspects of cohomology and k-theory, transcendental methods in the study of algebraic cycles.