Global Well-posedness and Asymptotic Behavior of the Solutions to Non-classical Thermo(visco)elastic Models


Book Description

This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.




Mathematical Reviews


Book Description













Recent Advances in Differential Equations and Applications


Book Description

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.




Mechanics and Mathematics of Fluids of the Differential Type


Book Description

This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3. The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type. Finally, the proofs of a number of useful results are collected in an appendix.




Kinetic Theory of Granular Gases


Book Description

In contrast to molecular gases (for example, air), the particles of granular gases, such as a cloud of dust, lose part of their kinetic energy when they collide, giving rise to many exciting physical properties. The book provides a self-contained introduction to the theory of granular gases for advanced undergraduates and beginning graduates.




Nonlinear Evolution Equations That Change Type


Book Description

This IMA Volume in Mathematics and its Applications NONLINEAR EVOLUTION EQUATIONS THAT CHANGE TYPE is based on the proceedings of a workshop which was an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshop focussed on prob lems of ill-posedness and change of type which arise in modeling flows in porous materials, viscoelastic fluids and solids and phase changes. We thank the Coordinat ing Committee: James Glimm, Daniel Joseph, Barbara Lee Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the workshop organizers, Barbara Lee Keyfitz and Michael Shearer, for their efforts in bringing together many of the major figures in those research fields in which theories for nonlinear evolution equations that change type are being developed. A vner Friedman Willard Miller, J r. ix PREFACE During the winter and spring quarters of the 1988/89 IMA Program on Non linear Waves, the issue of change of type in nonlinear partial differential equations appeared frequently. Discussion began with the January 1989 workshop on Two Phase Waves in Fluidized Beds, Sedimentation and Granular Flow; some of the papers in the proceedings of that workshop present strategies designed to avoid the appearance of change of type in models for multiphase fluid flow.




The Cahn–Hilliard Equation: Recent Advances and Applications


Book Description

This is the first book to present a detailed discussion of both classical and recent results on the popular Cahn–Hilliard equation and some of its variants. The focus is on mathematical analysis of Cahn–Hilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the Cahn–Hilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.