Gödel's Theorems and Zermelo's Axioms


Book Description

This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.




An Introduction to Gödel's Theorems


Book Description

In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.




The Axiom of Choice


Book Description

Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.




Principia Mathematica


Book Description




Metamathematics of First-Order Arithmetic


Book Description

A much-needed monograph on the metamathematics of first-order arithmetic, paying particular attention to fragments of Peano arithmetic.




Zermelo’s Axiom of Choice


Book Description

This book grew out of my interest in what is common to three disciplines: mathematics, philosophy, and history. The origins of Zermelo's Axiom of Choice, as well as the controversy that it engendered, certainly lie in that intersection. Since the time of Aristotle, mathematics has been concerned alternately with its assumptions and with the objects, such as number and space, about which those assumptions were made. In the historical context of Zermelo's Axiom, I have explored both the vagaries and the fertility of this alternating concern. Though Zermelo's research has provided the focus for this book, much of it is devoted to the problems from which his work originated and to the later developments which, directly or indirectly, he inspired. A few remarks about format are in order. In this book a publication is indicated by a date after a name; so Hilbert 1926, 178 refers to page 178 of an article written by Hilbert, published in 1926, and listed in the bibliography.




Forever Undecided


Book Description

Forever Undecided is the most challenging yet of Raymond Smullyan’s puzzle collections. It is, at the same time, an introduction—ingenious, instructive, entertaining—to Gödel’s famous theorems. With all the wit and charm that have delighted readers of his previous books, Smullyan transports us once again to that magical island where knights always tell the truth and knaves always lie. Here we meet a new and amazing array of characters, visitors to the island, seeking to determine the natives’ identities. Among them: the census-taker McGregor; a philosophical-logician in search of his flighty bird-wife, Oona; and a regiment of Reasoners (timid ones, normal ones, conceited, modest, and peculiar ones) armed with the rules of propositional logic (if X is true, then so is Y). By following the Reasoners through brain-tingling exercises and adventures—including journeys into the “other possible worlds” of Kripke semantics—even the most illogical of us come to understand Gödel’s two great theorems on incompleteness and undecidability, some of their philosophical and mathematical implications, and why we, like Gödel himself, must remain Forever Undecided!




On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Book Description

First English translation of revolutionary paper (1931) that established that even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. Introduction by R. B. Braithwaite.




Incompleteness and Computability


Book Description

A textbook on recursive function theory and G�del's incompleteness theorems. Also covers models of arithmetic and second-order logic.




Principles of Mathematical Logic


Book Description

David Hilbert was particularly interested in the foundations of mathematics. Among many other things, he is famous for his attempt to axiomatize mathematics. This now classic text is his treatment of symbolic logic. This translation is based on the second German edition and has been modified according to the criticisms of Church and Quine. In particular, the authors' original formulation of Gödel's completeness proof for the predicate calculus has been updated. In the first half of the twentieth century, an important debate on the foundations of mathematics took place. Principles of Mathematical Logic represents one of Hilbert's important contributions to that debate. Although symbolic logic has grown considerably in the subsequent decades, this book remains a classic.