Graph Databases in Action


Book Description

Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. Summary Relationships in data often look far more like a web than an orderly set of rows and columns. Graph databases shine when it comes to revealing valuable insights within complex, interconnected data such as demographics, financial records, or computer networks. In Graph Databases in Action, experts Dave Bechberger and Josh Perryman illuminate the design and implementation of graph databases in real-world applications. You'll learn how to choose the right database solutions for your tasks, and how to use your new knowledge to build agile, flexible, and high-performing graph-powered applications! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Isolated data is a thing of the past! Now, data is connected, and graph databases—like Amazon Neptune, Microsoft Cosmos DB, and Neo4j—are the essential tools of this new reality. Graph databases represent relationships naturally, speeding the discovery of insights and driving business value. About the book Graph Databases in Action introduces you to graph database concepts by comparing them with relational database constructs. You'll learn just enough theory to get started, then progress to hands-on development. Discover use cases involving social networking, recommendation engines, and personalization. What's inside Graph databases vs. relational databases Systematic graph data modeling Querying and navigating a graph Graph patterns Pitfalls and antipatterns About the reader For software developers. No experience with graph databases required. About the author Dave Bechberger and Josh Perryman have decades of experience building complex data-driven systems and have worked with graph databases since 2014. Table of Contents PART 1 - GETTING STARTED WITH GRAPH DATABASES 1 Introduction to graphs 2 Graph data modeling 3 Running basic and recursive traversals 4 Pathfinding traversals and mutating graphs 5 Formatting results 6 Developing an application PART 2 - BUILDING ON GRAPH DATABASES 7 Advanced data modeling techniques 8 Building traversals using known walks 9 Working with subgraphs PART 3 - MOVING BEYOND THE BASICS 10 Performance, pitfalls, and anti-patterns 11 What's next: Graph analytics, machine learning, and resources




The Practitioner's Guide to Graph Data


Book Description

Graph data closes the gap between the way humans and computers view the world. While computers rely on static rows and columns of data, people navigate and reason about life through relationships. This practical guide demonstrates how graph data brings these two approaches together. By working with concepts from graph theory, database schema, distributed systems, and data analysis, you’ll arrive at a unique intersection known as graph thinking. Authors Denise Koessler Gosnell and Matthias Broecheler show data engineers, data scientists, and data analysts how to solve complex problems with graph databases. You’ll explore templates for building with graph technology, along with examples that demonstrate how teams think about graph data within an application. Build an example application architecture with relational and graph technologies Use graph technology to build a Customer 360 application, the most popular graph data pattern today Dive into hierarchical data and troubleshoot a new paradigm that comes from working with graph data Find paths in graph data and learn why your trust in different paths motivates and informs your preferences Use collaborative filtering to design a Netflix-inspired recommendation system




Graph Databases


Book Description

Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. This second edition includes new code samples and diagrams, using the latest Neo4j syntax, as well as information on new functionality. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information




Graph Algorithms


Book Description

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark




Hands-On Graph Analytics with Neo4j


Book Description

Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning Key FeaturesGet up and running with graph analytics with the help of real-world examplesExplore various use cases such as fraud detection, graph-based search, and recommendation systemsGet to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scalingBook Description Neo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You’ll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You’ll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You’ll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you’ll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you’ll get to grips with structuring a web application for production using Neo4j. By the end of this book, you’ll not only be able to harness the power of graphs to handle a broad range of problem areas, but you’ll also have learned how to use Neo4j efficiently to identify complex relationships in your data. What you will learnBecome well-versed with Neo4j graph database building blocks, nodes, and relationshipsDiscover how to create, update, and delete nodes and relationships using Cypher queryingUse graphs to improve web search and recommendationsUnderstand graph algorithms such as pathfinding, spatial search, centrality, and community detectionFind out different steps to integrate graphs in a normal machine learning pipelineFormulate a link prediction problem in the context of machine learningImplement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphsWho this book is for This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.




Graph Databases


Book Description

Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information




Graph Representation Learning


Book Description

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.




Data Matching


Book Description

Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases. Peter Christen’s book is divided into three parts: Part I, “Overview”, introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, “Steps of the Data Matching Process”, then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, “Further Topics”, deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today. By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.




Graph Data Management


Book Description

This book presents a comprehensive overview of fundamental issues and recent advances in graph data management. Its aim is to provide beginning researchers in the area of graph data management, or in fields that require graph data management, an overview of the latest developments in this area, both in applied and in fundamental subdomains. The topics covered range from a general introduction to graph data management, to more specialized topics like graph visualization, flexible queries of graph data, parallel processing, and benchmarking. The book will help researchers put their work in perspective and show them which types of tools, techniques and technologies are available, which ones could best suit their needs, and where there are still open issues and future research directions. The chapters are contributed by leading experts in the relevant areas, presenting a coherent overview of the state of the art in the field. Readers should have a basic knowledge of data management techniques as they are taught in computer science MSc programs.




Neo4j - A Graph Project Story


Book Description

You may already have an idea of what Neo4j is and how it works, and maybe you've even played around with some ideas using it. The question now is how you can take your graph project all the way to production-grade. This is what is discussed in this book. The book starts with a brief introduction to Neo4j and its query language, CYPHER, to help readers who are just beginning to explore Neo4j. Then we go straight to the subject in question: how to set up a real life project based on Neo4j, from the proof of concept to an operating production-grade graph database. We focus on methodology, integrations with existing systems, performance, monitoring and security. As experts from the Neo4j community, the authors have chosen an unusual format to transmit their technical know-how: they tell you a story, a graph project story, where the protagonists are members of a technical team who specializes in the representation and manipulation of strongly connected data. The plot starts when a client come in with his project. You will attend their working sessions and see how they develop the project, fight over approaches, and ultimately solve the problems they encounter. Welcome to GraphITs.Tech! This audacious and, we hope, entertaining approach allows you to experience all aspects of setting up a graph database, from the various and sometimes opposing points of view of technical and network experts, project managers, and even trainees.