Introductory Graph Theory with Applications


Book Description

Graph theory’s practical applications extend not only across multiple areas of mathematics and computer science but also throughout the social sciences, business, engineering, and other subjects. Buckley and Lewinter have written their text with students of all these disciplines in mind. Pedagogically rich, the authors provide hundreds of worked-out examples, figures, and exercises of varying degrees of difficulty. Concepts are presented in a readable and accessible manner, and applications are stressed throughout so the reader never loses sight of the powerful tools graph theory provides to solve real-world problems. Such diverse areas as job assignment, delivery truck routing, location of emergency or service facilities, network reliability, zoo design, exam scheduling, error-correcting codes, facility layout, and the critical path method are covered.




A Textbook of Graph Theory


Book Description

In its second edition, expanded with new chapters on domination in graphs and on the spectral properties of graphs, this book offers a solid background in the basics of graph theory. Introduces such topics as Dirac's theorem on k-connected graphs and more.




Graph Theory


Book Description

This second volume in a two-volume series provides an extensive collection of conjectures and open problems in graph theory. It is designed for both graduate students and established researchers in discrete mathematics who are searching for research ideas and references. Each chapter provides more than a simple collection of results on a particular topic; it captures the reader’s interest with techniques that worked and failed in attempting to solve particular conjectures. The history and origins of specific conjectures and the methods of researching them are also included throughout this volume. Students and researchers can discover how the conjectures have evolved and the various approaches that have been used in an attempt to solve them. An annotated glossary of nearly 300 graph theory parameters, 70 conjectures, and over 600 references is also included in this volume. This glossary provides an understanding of parameters beyond their definitions and enables readers to discover new ideas and new definitions in graph theory. The editors were inspired to create this series of volumes by the popular and well-attended special sessions entitled “My Favorite Graph Theory Conjectures,” which they organized at past AMS meetings. These sessions were held at the winter AMS/MAA Joint Meeting in Boston, January 2012, the SIAM Conference on Discrete Mathematics in Halifax in June 2012, as well as the winter AMS/MAA Joint Meeting in Baltimore in January 2014, at which many of the best-known graph theorists spoke. In an effort to aid in the creation and dissemination of conjectures and open problems, which is crucial to the growth and development of this field, the editors invited these speakers, as well as other experts in graph theory, to contribute to this series.




Graph Theory and Its Applications


Book Description

Contributed papers presented at the Conference on Graph Theory and its Applications, held on March 14-16, 2001, at Anna University, Chennai.




Quantitative Graph Theory


Book Description

The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as: Comparative approaches (graph similarity or distance) Graph measures to characterize graphs quantitatively Applications of graph measures in social network analysis and other disciplines Metrical properties of graphs and measures Mathematical properties of quantitative methods or measures in graph theory Network complexity measures and other topological indices Quantitative approaches to graphs using machine learning (e.g., clustering) Graph measures and statistics Information-theoretic methods to analyze graphs quantitatively (e.g., entropy) Through its broad coverage, Quantitative Graph Theory: Mathematical Foundations and Applications fills a gap in the contemporary literature of discrete and applied mathematics, computer science, systems biology, and related disciplines. It is intended for researchers as well as graduate and advanced undergraduate students in the fields of mathematics, computer science, mathematical chemistry, cheminformatics, physics, bioinformatics, and systems biology.




Handbook of Graph Theory


Book Description

In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition-over 400 pages longer than its prede




Algebra, Graph Theory and their Applications


Book Description

Algebra and Graph Theory are two fascinating branches of Mathematics. The tools of each have been used in the other to explore and investigate problems in depth. Especially the Cayley graphs constructed out of the group structures have been greatly and extensively used in Parallel computers to provide network to the routing problem. ALGEBRA, GRAPH THEORY AND THEIR APPLICATIONS takes an inclusive view of the two areas and presents a wide range of topics. It includes sixteen referred research articles on algebra and graph theory of which three are expository in nature alongwith articles exhibiting the use of algebraic techniques in the study of graphs. A substantial proportion of the book covers topics that have not yet appeared in book form providing a useful resource to the younger generation of researchers in Discrete Mathematics.




Modern Graph Theory


Book Description

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.




Graph Theory and Combinatorial Optimization


Book Description

Graph theory is very much tied to the geometric properties of optimization and combinatorial optimization. Moreover, graph theory's geometric properties are at the core of many research interests in operations research and applied mathematics. Its techniques have been used in solving many classical problems including maximum flow problems, independent set problems, and the traveling salesman problem. Graph Theory and Combinatorial Optimization explores the field's classical foundations and its developing theories, ideas and applications to new problems. The book examines the geometric properties of graph theory and its widening uses in combinatorial optimization theory and application. The field's leading researchers have contributed chapters in their areas of expertise.