Graph Theory with Algorithms and its Applications


Book Description

The book has many important features which make it suitable for both undergraduate and postgraduate students in various branches of engineering and general and applied sciences. The important topics interrelating Mathematics & Computer Science are also covered briefly. The book is useful to readers with a wide range of backgrounds including Mathematics, Computer Science/Computer Applications and Operational Research. While dealing with theorems and algorithms, emphasis is laid on constructions which consist of formal proofs, examples with applications. Uptill, there is scarcity of books in the open literature which cover all the things including most importantly various algorithms and applications with examples.




Graph Theory, Combinatorics and Algorithms


Book Description

Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications focuses on discrete mathematics and combinatorial algorithms interacting with real world problems in computer science, operations research, applied mathematics and engineering. The book contains eleven chapters written by experts in their respective fields, and covers a wide spectrum of high-interest problems across these discipline domains. Among the contributing authors are Richard Karp of UC Berkeley and Robert Tarjan of Princeton; both are at the pinnacle of research scholarship in Graph Theory and Combinatorics. The chapters from the contributing authors focus on "real world" applications, all of which will be of considerable interest across the areas of Operations Research, Computer Science, Applied Mathematics, and Engineering. These problems include Internet congestion control, high-speed communication networks, multi-object auctions, resource allocation, software testing, data structures, etc. In sum, this is a book focused on major, contemporary problems, written by the top research scholars in the field, using cutting-edge mathematical and computational techniques.




Graph Theory for Programmers


Book Description

In delivering lectures and writing books, we were most often forced to pay absolutely no attention to a great body of interesting results and useful algorithms appearing in numerous sources and occasionally encountered. It was absolutely that most of these re sults would finally be forgotten because it is impossible to run through the entire variety of sources where these materials could be published. Therefore, we decided to do what we can to correct this situation. We discussed this problem with Ershov and came to an idea to write an encyclopedia of algorithms on graphs focusing our main attention on the algorithms already used in programming and their generalizations or modifications. We thought that it is reasonable to group all graphs into certain classes and place the algo rithms developed for each class into a separate book. The existence of trees, i. e. , a class of graphs especially important for programming, also supported this decision. This monograph is the first but, as we hope, not the last book written as part of our project. It was preceded by two books "Algorithms on Trees" (1984) and "Algorithms of Processing of Trees" (1990) small editions of which were published at the Computer Center of the Siberian Division of the Russian Academy of Sciences. The books were distributed immediately and this made out our decision to prepare a combined mono graph on the basis of these books even stronger.




Graph Algorithms and Applications 3


Book Description

This book contains Volume 6 of the Journal of Graph Algorithms and Applications (JGAA) . JGAA is a peer-reviewed scientific journal devoted to the publication of high-quality research papers on the analysis, design, implementation, and applications of graph algorithms. Areas of interest include computational biology, computational geometry, computer graphics, computer-aided design, computer and interconnection networks, constraint systems, databases, graph drawing, graph embedding and layout, knowledge representation, multimedia, software engineering, telecommunications networks, user interfaces and visualization, and VLSI circuit design. Graph Algorithms and Applications 3 presents contributions from prominent authors and includes selected papers from the Symposium on Graph Drawing (1999 and 2000). All papers in the book have extensive diagrams and offer a unique treatment of graph algorithms focusing on the important applications. Contents: Triangle-Free Planar Graphs and Segment Intersection Graphs (N de Castro et al.); Traversing Directed Eulerian Mazes (S Bhatt et al.); A Fast Multi-Scale Method for Drawing Large Graphs (D Harel & Y Koren); GRIP: Graph Drawing with Intelligent Placement (P Gajer & S G Kobourov); Graph Drawing in Motion (C Friedrich & P Eades); A 6-Regular Torus Graph Family with Applications to Cellular and Interconnection Networks (M Iridon & D W Matula); and other papers. Readership: Researchers and practitioners in theoretical computer science, computer engineering, and combinatorics and graph theory.




Graphs, Algorithms, and Optimization


Book Description

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.




Graph Theory and Its Applications, Second Edition


Book Description

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.




Graph Theory


Book Description

Graph Theory: An Introduction to Proofs, Algorithms, and Applications Graph theory is the study of interactions, conflicts, and connections. The relationship between collections of discrete objects can inform us about the overall network in which they reside, and graph theory can provide an avenue for analysis. This text, for the first undergraduate course, will explore major topics in graph theory from both a theoretical and applied viewpoint. Topics will progress from understanding basic terminology, to addressing computational questions, and finally ending with broad theoretical results. Examples and exercises will guide the reader through this progression, with particular care in strengthening proof techniques and written mathematical explanations. Current applications and exploratory exercises are provided to further the reader’s mathematical reasoning and understanding of the relevance of graph theory to the modern world. Features The first chapter introduces graph terminology, mathematical modeling using graphs, and a review of proof techniques featured throughout the book The second chapter investigates three major route problems: eulerian circuits, hamiltonian cycles, and shortest paths. The third chapter focuses entirely on trees – terminology, applications, and theory. Four additional chapters focus around a major graph concept: connectivity, matching, coloring, and planarity. Each chapter brings in a modern application or approach. Hints and Solutions to selected exercises provided at the back of the book. Author Karin R. Saoub is an Associate Professor of Mathematics at Roanoke College in Salem, Virginia. She earned her PhD in mathematics from Arizona State University and BA from Wellesley College. Her research focuses on graph coloring and on-line algorithms applied to tolerance graphs. She is also the author of A Tour Through Graph Theory, published by CRC Press.




Graph Theory with Applications


Book Description




A Java Library of Graph Algorithms and Optimization


Book Description

Because of its portability and platform-independence, Java is the ideal computer programming language to use when working on graph algorithms and other mathematical programming problems. Collecting some of the most popular graph algorithms and optimization procedures, A Java Library of Graph Algorithms and Optimization provides the source code for




Algorithmic Graph Theory


Book Description

An introduction to pure and applied graph theory with an emphasis on algorithms and their complexity.