Green Chemistry and Water Remediation: Research and Applications


Book Description

Green Chemistry and Water Remediation: Research and Applications explores how integrating the principles of green chemistry into remediation research and practice can have a great impact from multiple directions. This volume reviews both common sources of chemical pollution and how using green chemistry as the basis for new or improved remediation techniques can ensure that remediation itself is conducted in a sustainable way. By outlining the main types of chemical pollutants in water and sustainable ways to address them, the authors hope to help chemists identify key areas and encourage them to integrate green chemistry into the design of new processes and products. In addition, the books highlights and encourages the use of the growing range of green remediation approaches available to experts, helping researchers, planners and managers make informed decisions in their selection of remediation techniques. - Puts the naturally-aligned fields of green chemistry and environmental remediation in context, providing key background to both - Highlights the use of both established and cutting-edge techniques for sustainable water remediation, including nanotechnology, biofiltration and phytoremediation - Explores the potential impact sustainability goals in chemical waste production and water remediation




Green Materials for Sustainable Water Remediation and Treatment


Book Description

Inadequate access to clean water afflicts people throughout the world, and in developing countries any solution to this challenge must be achieved at a low cost and low energy demand. At the same time, the use of chemicals, and subsequent environmental impact must also be reduced. Green and sustainable water remediation is a rapidly growing field of interest to governments and corporations alike, with considerable input from academics, environmental consultants and public interest groups. This book presents a focused set of articles covering a range of topics in the field, examining not only the adoption of natural products for water remediation, but also the synthesis of new materials and emerging clean technologies. Contributors from across the globe (including some "on the ground" in the developing world) present a comprehensive digest in the form of review-style articles highlighting the current thinking and direction in the field. Interested stakeholders from all sectors will find this book invaluable, and postgraduate students of chemical engineering or environmental science will benefit from the real-world applications presented.




Green Methods for Wastewater Treatment


Book Description

This book presents comprehensive chapters on the latest research and applications in wastewater treatment using green technologies. Topics include mesoporous materials, TiO2 nanocomposites and magnetic nanoparticles, the role of catalysts, treatment methods such as photo-Fenton, photocatalysis, electrochemistry and adsorption, and anti-bacterial solutions. This book will be useful for chemical engineers, environmental scientists, analytical chemists, materials scientists and researchers.




Smart Nanomaterials for Environmental Applications


Book Description

Smart nanomaterials are making their presence ever so noticeable in areas like environmental protection and remediation, as well as in many other fields of study. The international team of expert researchers behind Smart Nanomaterials for Environmental Applications aims to spotlight the latest, rapid developments in the design and manipulation of materials at the nanoscale and to concisely present information regarding their novel methods of utilization for the safeguard of the environment, while at the same time apprising readers of challenges encountered and anticipated prospects. The volume illustrates state-of-the-art, actionable content, which is relevant and extremely valuable for those who want to apply this up-to-date knowledge in industry too. - Offers fundamentals of smart nanomaterials, including characterization, design, and fabrication methods - Includes advanced information on fine-tuning different morphologies of smart nanomaterials - Features three case studies on real-life applications of smart nanomaterials




Applied Water Science, Volume 2


Book Description

APPLIED WATER SCIENCE VOLUME 2 The second volume in a new two-volume set on applied water science, this book provides understanding, occurrence, identification, toxic effects and control of water pollutants in an aquatic environment using green chemistry protocols. The high rate of industrialization around the world has led to an increase in the rate of anthropogenic activities which involve the release of different types of contaminants into the aquatic environment. This generates high environmental risks, which could affect health and socio-economic activities if not treated properly. There is no doubt that the rapid progress in improving water quality and management has been motivated by the latest developments in green chemistry. Over the past decade, sources of water pollutants and the conventional methods used for the treatment of industrial wastewater treatment have flourished. Water quality and its adequate availability have been a matter of concern worldwide particularly in developing countries. According to a World Health Organization (WHO) report, more than 80% of diseases are due to the consumption of contaminated water. Heavy metals are highly toxic and are a potential threat to water, soil, and air. Their consumption in higher concentrations gives hazardous outcomes. Water quality is usually measured in terms of chemical, physical, biological, and radiological standards. The discharge of effluent by industries contains heavy metals, hazardous chemicals, and a high amount of organic and inorganic impurities that can contaminate the water environment, and hence, human health. Therefore, it is our primary responsibility to maintain the water quality in our respective countries. This book provides understanding, occurrence, identification, toxic effects and control of water pollutants in an aquatic environment using green chemistry protocols. It focuses on water remediation properties and processes including industry-scale water remediation technologies. This book covers recent literature on remediation technologies in preventing water contamination and its treatment. Chapters in this book discuss remediation of emerging pollutants using nanomaterials, polymers, advanced oxidation processes, membranes, and microalgae bioremediation, etc. It also includes photochemical, electrochemical, piezoacoustic, and ultrasound techniques. It is a unique reference guide for graduate students, faculties, researchers and industrialists working in the area of water science, environmental science, analytical chemistry, and chemical engineering. This outstanding new volume: Provides an in-depth overview of remediation technologies in water science Is written by leading experts in the field Contains excellent, well-drafted chapters for beginners, graduate students, veteran engineers, and other experts alike Discusses current challenges and future perspectives in the field Audience: This book is an invaluable guide to engineers, students, professors, scientists and R&D industrial specialists working in the fields of environmental science, geoscience, water science, physics and chemistry.




Traditional and Novel Adsorbents for Antibiotics Removal from Wastewater


Book Description

Traditional and Novel Adsorbents for Antibiotics Removal from Wastewater describes, in detail, the importance of removing antibiotics from aqueous systems, along with new information on their variation, solubility, toxicology and allowable concentration in groundwater. The book covers adsorption as an applicable method, highlighting its advantages and disadvantages. It investigates various adsorbents ranging from traditional activated carbons, modified forms of clays, metal oxides, polymer resins, and more advanced materials such as graphene-based, MOF, nano-matrices, and composite materials as potential sorbents for the adsorption of antibiotics from aqueous solutions. In addition, the book covers biological microorganisms that have been used to remove antibiotics from wastewater and presents biopolymers, biowaste and living cells potentially and practically suitable for this purpose. For all adsorbents, the book explains preparation methods, main properties, modification techniques to increase antibiotic removal efficiency, mechanisms in antibiotic removal, advantages and limitations. It also presents adsorption-desorption in batch and continuous mode, optimized operating parameters, kinetic and equilibrium adsorption, and regeneration studies. - Provides production and modification methods of conventional and non-conventional adsorbent materials for antibiotics adsorption from aqueous systems - Considers the effects of antibiotics type and porous and chemical properties of adsorbents to improve the sorption capacity and ease of regeneration - Features recent advances in the use of biowaste materials and biosorption processes for green removal of antibiotics from wastewater




Biomass for Sustainable Applications


Book Description

Sustainable sources of energy and a supply of good quality water are two major challenges facing modern societies across the globe. Biomass from cultivated plants may be used to generate energy, but at the cost of contaminated surface waters from pesticide and fertiliser use. This two-volume set examines the potential use of biomass as both a source of sustainable energy and a resource to tackle contaminated soils and wastewaters. Consideration is given to non-food crops, bacteria ,and fungi as sources of biomass and the book enables the reader to identify the best local bioresources according to the desired application. With contributions from across the globe, this is an essential guide to meeting the demand for energy and pollution remediation by exploiting local and renewable resources. The example scenarios given may inspire policy makers and local officers, while chemical engineers and environmental scientists in both academia and industry will benefit from the comprehensive review of current thinking and application.




Circular Economy


Book Description

The reclamation of wastewater (and other essential materials) is among the major research areas for understanding the effects of implementing a circular economic model. The re-use and re-cycling of wastewater can greatly reduce the overall demand for freshwater for various industrial applications. Such concepts could potentially greatly reduce the overall water demands of our planet if implemented successfully. Circular Economy: Applications for Water Remediation will examine the current understanding of the circular economy in water remediation processes, its drawbacks, and relatively unexplored areas that require further research. This book: • Provides an overview of the processes available to extract value-added materials from wastewater, such as clean water, nutrients, and energy. • Explores the possibilities of re-using wastewater for agricultural uses. • Provides an overview of the current policies and regulations concerning the implementation of circular economy concepts in wastewater remediation.




Water Reclamation and Sustainability


Book Description

Many hydrological, geochemical, and biological processes associated with water reclamation and reuse are poorly understood. In particular, the occurrence and effects of trace organic and inorganic contaminants commonly found in reclaimed water necessitates careful analysis and treatment prior to safe reuse. Water Reclamation and Sustainability is a practical guide to the latest water reclamation, recycling, and reuse theory and practice. From water quality criteria and regulations to advanced techniques and implementation issues, this book offers scientists a toolkit for developing safe and successful reuse strategies. With a focus on specific contaminant removal techniques, this book comprehensively covers the full range of potential inorganic/organic contaminating compounds and highlights proven remediation methods. Socioeconomic implications related to current and future water shortages are also addressed, underscoring the many positive benefits of sustainable water resource management. - Offers pragmatic solutions to global water shortages - Provides an overview of the latest analytical techniques for water monitoring - Reviews current remediation efforts - Covers innovative technologies for green, gray, brown and black water reclamation and reuse




Advanced Oxidation Processes for Water Treatment


Book Description

Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada