Ground-water Quality Classification and Recommended Septic Tank Soil-absorption-system Density Maps, Castle Valley, Grand County, Utah


Book Description

"This CD-ROM contains a 30 page report with 22 page appendix, and seven maps at 1:15,000 to 1:30,000 scale in easily readable PDF format that address ground-water quality in Castle Valley's valley-fill aquifer and provide recommendations for septic tank soil-absorption-system density based on potential water-quality degradation associated with use of these systems. The maps are described in detail in the report and show geology, valley-fill thickness, total-dissolved-solids concentration, nitrate concentration, ground-water quality class, potential containment sources, and recommended lot size."--Sticker on back of case.




Ground-water Quality Classification and Recommended Septic Tank Soil-absorption-system Density Maps, Cache Valley, Cache County, Utah


Book Description

"This CD-ROM contains a report and 10 maps at 1:100,000-scale in easily readable PDF format that address ground-water quality in Cache Valley's basin-fill aquifer and provide recommendations for septic tank soil-absorption-system densities based on potential water-quality degradation associated with usage of these systems. The maps are described in detail in the report and show total-dissolved-solids, nitrate, iron, sulfate, and chloride concentrations, and recommended septic tank soil-absorption-system densities."--sticker on back of case.




Water-quality Assessment of the Principal Valley-fill Aquifers in the Southern Sanpete and Central Sevier Valleys, Sanpete County, Utah


Book Description

"This study (132 p., 6 pl.) assesses water quality in the aquifers in the southern Sanpete and central Sevier Valleys to determine likely sources of nitrate pollution and determine the relative age of high-nitrate water"--Back label of container.




AQUIFER STORAGE AND RECOVERY IN MILLVILLE, CACHE COUNTY, UTAH


Book Description

This study is an investigation of the feasibility of an aquifer storage and recovery project using the existing water supply infrastructure of the city of Millville, Utah. The project involved injecting water from a public water supply spring into a public water supply well. Geochemical analysis indicates that the major ion chemistry of the spring water is very similar to that of the principal aquifer, however, the spring water would likely cause minor geochemical changes in the groundwater due to oxidation. The study also showed that the injection well had elevated nitrate concentration which is likely due to septic systems in the area. Overall, the pilot tests showed that injection of water for storage would not be detrimental to the principal aquifer, which has significant storage abilities beyond the capacity of Millville’s water system; however elevated nitrate in the aquifer is a problem that should be addressed.







Hydrogeologic Studies and Groundwater Monitoring in Snake Valley and Adjacent Hydrographic Areas, West-central Utah and East-central Nevada: report (304 pages), 4 Plates, Appendices and data tables


Book Description

This report (269 pages, 4 plates) presents hydrogeologic, groundwater-monitoring, and hydrochemical studies by the Utah Geological Survey (UGS) in Snake Valley, Tule Valley, and Fish Springs Flat in Millard and Juab Counties, west-central Utah. Data From the newly established UGS groundwater-monitoring network establish current baseline conditions, and will help quantify the effects of future variations in climate and groundwater pumping. New hydrochemical data show that groundwater quality is generally good, major-solute chemistry varies systematically from recharge to discharge areas, and suggest that most groundwater was recharged over one thousand years ago, implying low recharge rates and/or long or slow flow paths. Two aquifer tests yield estimates of transmissivity and storativity for the carbonate-rock and basin-fill aquifers. Variations in the potentiometric surface, hydrogeology, and hydrochemistry are consistent with the hypothesis of regional groundwater flow from Snake Valley northeast to Tule Valley and Fish Springs. Collectively, our work delineates groundwater levels, flow, and chemistry in Snake Valley and adjacent basins to a much greater degree than previously possible, and emphasizes the sensitivity of the groundwater system to possible increases in groundwater pumping.




Survey Notes


Book Description




Central Utah


Book Description

Accompanying CD-ROM contains ... papers in this volume (in color) as pdf files."--Page v.




The Hydrogeology of Moab-Spanish Valley, Grand and San Juan Counties, Utah, with Emphasis on Maps for Water-resource Management and Land-use Planning


Book Description

The purpose of this study is to provide tools for water-resource management and land-use planning; to accomplish this purpose we (1) characterize the relationship of geology to ground-water conditions in the Glen Canyon and the unconsolidated valley-fill aquifers, (2) classify the groundwater quality of the Glen Canyon (east of the valley only) and valley-fill aquifers to formally identify and document the beneficial use of ground-water resources, and (3) apply a ground-water flow model using a mass balance approach to determine the potential impact of projected increased numbers of septic-tank systems on water quality in the valley-fill aquifer and thereby recommend appropriate septic-system density requirements to limit water-quality degradation