Groups and Symmetry


Book Description

This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.




Groups and Symmetries


Book Description

- Combines material from many areas of mathematics, including algebra, geometry, and analysis, so students see connections between these areas - Applies material to physics so students appreciate the applications of abstract mathematics - Assumes only linear algebra and calculus, making an advanced subject accessible to undergraduates - Includes 142 exercises, many with hints or complete solutions, so text may be used in the classroom or for self study




Groups and Symmetry: A Guide to Discovering Mathematics


Book Description

Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.




Theory Of Groups And Symmetries: Finite Groups, Lie Groups, And Lie Algebras


Book Description

The book presents the main approaches in study of algebraic structures of symmetries in models of theoretical and mathematical physics, namely groups and Lie algebras and their deformations. It covers the commonly encountered quantum groups (including Yangians). The second main goal of the book is to present a differential geometry of coset spaces that is actively used in investigations of models of quantum field theory, gravity and statistical physics. The third goal is to explain the main ideas about the theory of conformal symmetries, which is the basis of the AdS/CFT correspondence.The theory of groups and symmetries is an important part of theoretical physics. In elementary particle physics, cosmology and related fields, the key role is played by Lie groups and algebras corresponding to continuous symmetries. For example, relativistic physics is based on the Lorentz and Poincare groups, and the modern theory of elementary particles — the Standard Model — is based on gauge (local) symmetry with the gauge group SU(3) x SU(2) x U(1). This book presents constructions and results of a general nature, along with numerous concrete examples that have direct applications in modern theoretical and mathematical physics.




Symmetry


Book Description

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.




Symmetries and Group Theory in Particle Physics


Book Description

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.




Symmetry and Group theory in Chemistry


Book Description

A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries. - Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetry - Covers both point-group and space-group symmetries - Includes tutorial solutions




Symmetries and Groups in Signal Processing


Book Description

Symmetries and Groups in Signal Processing: An Introduction deals with the subject of symmetry, and with its place and role in modern signal processing. In the sciences, symmetry considerations and related group theoretic techniques have had a place of central importance since the early twenties. In engineering, however, a matching recognition of their power is a relatively recent development. Despite that, the related literature, in the form of journal papers and research monographs, has grown enormously. A proper understanding of the concepts that have emerged in the process requires a mathematical background that goes beyond what is traditionally covered in an engineering undergraduate curriculum. Admittedly, there is a wide selection of excellent introductory textbooks on the subject of symmetry and group theory. But they are all primarily addressed to students of the sciences and mathematics, or to students of courses in mathematics. Addressed to students with an engineering background, this book is meant to help bridge the gap.




Point Group Symmetry Applications


Book Description

The mathematical apparatus of group theory is a means of exploring and exploiting physical and algebraic structure in physical and chemical prob lems. The existence of structure in the physical processes leads to structure in the solutions. For group theory to be useful this structure need not be an exact symmetry, although as examples of exact symmetries we have that the identity of electrons leads to permutation symmetries in many-electron wave functions, the spatial structure of crystals leads to the Bloch theory of crystal eigenfunctions, and the rotational invariance of the hydrogenic Hamiltonian leads to its factorization into angular and radial parts. In the 1930's Wigner extended what is known to mathematicians as the theory of group representations and the theory of group algebras to study the coupling coefficients of angular momentum, relating various properties of the coefficients to the properties of the abstract group of rotations in 3-space. In 1949 Racah, in a paper on rare earth spectra, showed that similar coefficients occur in other situations. Immediately a number of studies of the coefficients were begun, notably by Jahn, with his applications in nuclear physics. In the years since then a large number of physicists and chemists have added to the development of a general theory of the coefficients, or have produced specialized tables for a specific application. Applications now range from high-energy physics to biology.




Visual Group Theory


Book Description

Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.