Groups with the Haagerup Property


Book Description

A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. This book is to covers various aspects of the Haagerup property. It gives several new examples.




Geometry and Dynamics in Gromov Hyperbolic Metric Spaces


Book Description

This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.





Book Description




$\textrm {C}^*$-Algebras and Finite-Dimensional Approximations


Book Description

$\textrm{C}*$-approximation theory has provided the foundation for many of the most important conceptual breakthroughs and applications of operator algebras. This book systematically studies (most of) the numerous types of approximation properties that have been important in recent years: nuclearity, exactness, quasidiagonality, local reflexivity, and others. Moreover, it contains user-friendly proofs, insofar as that is possible, of many fundamental results that were previously quite hard to extract from the literature. Indeed, perhaps the most important novelty of the first ten chapters is an earnest attempt to explain some fundamental, but difficult and technical, results as painlessly as possible. The latter half of the book presents related topics and applications--written with researchers and advanced, well-trained students in mind. The authors have tried to meet the needs both of students wishing to learn the basics of an important area of research as well as researchers who desire a fairly comprehensive reference for the theory and applications of $\textrm{C}*$-approximation theory.




Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures


Book Description

ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.




Geometry and Dynamics of Groups and Spaces


Book Description

Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.




Operator Algebra and Dynamics


Book Description

Based on presentations given at the NordForsk Network Closing Conference “Operator Algebra and Dynamics,” held in Gjáargarður, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operator algebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filtered K-theory over finite topological spaces, C*-algebras associated to shift spaces (or subshifts), graph C*-algebras, irrational extended rotation algebras that are shown to be C*-alloys, free probability, renewal systems, the Grothendieck Theorem for jointly completely bounded bilinear forms on C*-algebras, Cuntz-Li algebras associated with the a-adic numbers, crossed products of injective endomorphisms (the so-called Stacey crossed products), the interplay between dynamical systems, operator algebras and wavelets on fractals, C*-completions of the Hecke algebra of a Hecke pair, semiprojective C*-algebras, and the topological dimension of type I C*-algebras. Operator Algebra and Dynamics will serve as a useful resource for a broad spectrum of researchers and students in mathematics, physics, and engineering.




Geometry, Rigidity, and Group Actions


Book Description

The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.




Arithmetic Groups and Their Generalizations


Book Description

In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.




Quantum and Stochastic Mathematical Physics


Book Description

Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.