Growth and Collapse of the Tibetan Plateau


Book Description

Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We present interdisciplinary contributions allowing insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.




Special Publication 353 - Growth and Collapse of the Tibetan Plateau


Book Description

Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We therefore present cross-disciplinary contributions which allow insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.










The Asian Monsoon


Book Description

The Asian monsoon is one of the most dramatic climatic phenomena on Earth, with far-reaching environmental and societal effects. Almost two thirds of humanity lives within regions influenced by the monsoon. With the emerging Asian economies, the importance of the region to the global economy has never been more marked. The Asian Monsoon describes the evolution of the monsoon, and proposes a connection between the tectonic evolution of the solid Earth and monsoon intensity. The authors explain how the monsoon has been linked to orbital processes and thus to other parts of the global climate system, especially glaciation. Finally, they summarize how monsoon evolution since the last Ice Age has impacted human societies, as well as commenting on the potential impact of future climate change. This book presents a multi-disciplinary overview of the monsoon for advanced students and researchers in atmospheric science, climatology, oceanography, geophysics, and geomorphology.




Restoration and Development of the Degraded Loess Plateau, China


Book Description

This book presents state-of-the-art scientific evidence and technological innovations to restore lands on the Loess Plateau of China, known worldwide for its serious land degradation and desertification problems. Supported by a rapidly developing Chinese economy and the dissemination of effective technology, the Grain-for-Green Project and Western Development Action launched by the Chinese government have resulted in successful ecological restoration and protection over the past 30 years. These programs have contributed not only to conservation of soil and water, but also to economic development. At the same time, however, these developmental interventions have brought new challenges that have not yet been fully addressed. The book describes (1) case studies of success and failure in practice, including rare success stories of combating desertification; (2) technical issues such as erosion control and breeding of stress-tolerant plant species, and socioeconomic measures taken by the Chinese government and lending policies with support from the World Bank; and (3) comprehensive measures against desertification, such as water and wind erosion, salinization, and deforestation. This volume is recommended for researchers and students above the undergraduate level in diverse fields including soil science, rural engineering, social technology and civil engineering, biology, ecology, climatology, physical and human geography, and developmental economics, among others. It also serves as a valuable resource for engineers, government officials, and NPOs and NGOs involved in afforestation, ecological restoration, combating desertification, disaster prevention, and sustainable rural development.







Meltdown in Tibet


Book Description

Tibetans have experienced waves of genocide since the 1950s. Now they are facing ecocide. The Himalayan snowcaps are in meltdown mode, due to climate change—accelerated by a rain of black soot from massive burning of coal and other fuels in both China and India. The mighty rivers of Tibet are being dammed by Chinese engineering consortiums to feed the mainland's thirst for power, and the land is being relentlessly mined in search of minerals to feed China's industrial complex. On the drawing board are plans for a massive engineering project to divert water from Eastern Tibet to water-starved Northern China. Ruthless Chinese repression leaves Tibetans powerless to stop the reckless destruction of their sacred land, but they are not the only victims of this campaign: the nations downstream from Tibet rely heavily on rivers sourced in Tibet for water supply, and for rich silt used in agriculture. This destruction of the region's environment has been happening with little scrutiny until now. In Meltdown in Tibet, Michael Buckley turns the spotlight on the darkest side of China's emergence as a global super power.




Tectonics of the Himalaya


Book Description

The Himalayan mountain belt, which developed during the India–Asia collision starting about 55 Ma ago, is a dramatically active orogen and it is regarded as the classic collisional orogen. It is characterized by an impressively continuous 2500 km of tectonic units, thrusts and normal faults, as well as large volumes of high-grade metamorphic rocks and granites exposed at the surface. This constitutes an invaluable field laboratory, where amazing crustal sections can be observed directly in very deep gorges. It is possible to unravel the tectonic and metamorphic evolution of litho-units, to observe the mechanisms of exhumation of deep-seated rocks and the propagation of the deformation. Himalayan tectonics has been the target of many studies from numerous international researchers over the years. In the last 15 years there has been an explosion of data and theories from both geological and geophysical perspectives. This book presents the results of integrated multidisciplinary studies, including geology, petrology, magmatism, geochemistry, geochronology and geophysics, of the structures and processes affecting the continental lithosphere. These processes and their spatial and temporal evolution have major consequences on the geometry and kinematics of the India–Eurasia collision zone.




River Morphodynamics and Stream Ecology of the Qinghai-Tibet Plateau


Book Description

This book focuses on the river morphodynamics and stream ecology of the Qinghai-Tibet Plateau. The objective of the book is to summarize and synthesize the recent studies based on field surveys undertaken in the period 2007-2014. This book was written to serve as a graduate-level text for a course in river dynamics and stream ecology and as a refer