Growth and Diffusion Phenomena


Book Description

Diffusion and growth phenomena abound in the real world surrounding us. Someexamples: growth of the world's population, growth rates of humans, public interest in news events, growth and decline of central city populations, pollution of rivers, adoption of agricultural innovations, and spreading of epidemics and migration of insects. These and numerous other phenomena are illustrations of typical growth and diffusion problems confronted in many branches of the physical, biological and social sciences as well as in various areas of agriculture, business, education, engineering medicine and public health. The book presents a large number of mathematical models to provide frameworks forthe analysis and display of many of these. The models developed and utilizedcommence with relatively simple exponential, logistic and normal distribution functions. Considerable attention is given to time dependent growth coefficients and carrying capacities. The topics of discrete and distributed time delays, spatial-temporal diffusion and diffusion with reaction are examined. Throughout the book there are a great many numerical examples. In addition and most importantly, there are more than 50 in-depth "illustrations" of the application of a particular framework ormodel based on real world problems. These examples provide the reader with an appreciation of the intrinsic nature of the phenomena involved. They address mainly readers from the physical, biological, and social sciences, as the only mathematical background assumed is elementary calculus. Methods are developed as required, and the reader can thus acquire useful tools for planning, analyzing, designing,and evaluating studies of growth transfer and diffusion phenomena. The book draws on the author's own hands-on experience in problems of environmental diffusion and dispersion, as well as in technology transfer and innovation diffusion.




Fractal Growth Phenomena


Book Description

The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes. This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.




Spatial Diffusion


Book Description

In this concise, clear introduction, the authors describe the theory of spatial diffusion, its method of measurement and many of its applications. The seminal work of Torsten Hagerstrand, who introduced the original spatial model of diffusion, is outlined. The authors then summarise the developments that have been made to Hagerstrand's formulation, and make suggestions for future research.




Fractal Growth Phenomena (2nd Edition)


Book Description

The investigation of phenomena involving fractals has gone through a spectacular development in the last decade. Many physical, technological and biological processes have been shown to be related to and described by objects with non-integer dimensions. The physics of far-from-equilibrium growth phenomena represents one of the most important fields in which fractal geometry is widely applied. During the last couple of years considerable experimental, numerical and theoretical information has accumulated concerning such processes.This book, written by a well-known expert in the field, summarizes the basic concepts born in the studies of fractal growth and also presents some of the most important new results for more specialized readers. It also contains 15 beautiful color plates demonstrating the richness of the geometry of fractal patterns. Accordingly, it may serve as a textbook on the geometrical aspects of fractal growth and it treats this area in sufficient depth to make it useful as a reference book. No specific mathematical knowledge is required for reading this book which is intended to give a balanced account of the field.




The Mathematics of Diffusion


Book Description

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.




Parabolic Equations in Biology


Book Description

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.




2019-20 MATRIX Annals


Book Description

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.




The Role of Diffusion Processes in Fertility Change in Developing Countries


Book Description

This report summarizes presentations and discussions at the Workshop on the Social Processes Underlying Fertility Change in Developing Countries, organized by the Committee on Population of the National Research Council (NRC) in Washington, D.C., January 29-30, 1998. Fourteen papers were presented at the workshop; they represented both theoretical and empirical perspectives and shed new light on the role that diffusion processes may play in fertility transition. These papers served as the basis for the discussion that is summarized in this report.




Adsorption and Diffusion


Book Description

"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.




Numerical Methods for Diffusion Phenomena in Building Physics


Book Description

This book is the second edition of Numerical methods for diffusion phenomena in building physics: a practical introduction originally published by PUCPRESS (2016). It intends to stimulate research in simulation of diffusion problems in building physics, by providing an overview of mathematical models and numerical techniques such as the finite difference and finite-element methods traditionally used in building simulation tools. Nonconventional methods such as reduced order models, boundary integral approaches and spectral methods are presented, which might be considered in the next generation of building-energy-simulation tools. In this reviewed edition, an innovative way to simulate energy and hydrothermal performance are presented, bringing some light on innovative approaches in the field.