Evaluation of the Congressionally Directed Medical Research Programs Review Process


Book Description

The medical research landscape in the United States is supported by a variety of organizations that spend billions of dollars in government and private funds each year to seek answers to complex medical and public health problems. The largest government funder is the National Institutes of Health (NIH), followed by the Department of Defense (DoD). Almost half of DoD's medical research funding is administered by the Congressionally Directed Medical Research Programs (CDMRP). The mission of CDMRP is to foster innovative approaches to medical research in response to the needs of its stakeholdersâ€"the U.S. military, their families, the American public, and Congress. CDMRP funds medical research to be performed by other government and nongovernmental organizations, but it does not conduct research itself. The major focus of CDMRP funded research is the improved prevention, diagnosis, and treatment of diseases, injuries, or conditions that affect service members and their families, and the general public. The hallmarks of CDMRP include reviewing applications for research funding using a two-tiered review process, and involving consumers throughout the process. Evaluation of the Congressionally Directed Medical Research Programs Review Process evaluates the CDMRP two-tiered peer review process, its coordination of research priorities with NIH and the Department of Veterans Affairs, and provides recommendations on how the process for reviewing and selecting studies can be improved.




Division of Research Programs


Book Description







Responsible Conduct of Research


Book Description

Recent scandals and controversies, such as data fabrication in federally funded science, data manipulation and distortion in private industry, and human embryonic stem cell research, illustrate the importance of ethics in science. Responsible Conduct of Research, now in a completely updated second edition, provides an introduction to the social, ethical, and legal issues facing scientists today.




Principles and Practice of Clinical Research


Book Description

The second edition of this innovative work again provides a unique perspective on the clinical discovery process by providing input from experts within the NIH on the principles and practice of clinical research. Molecular medicine, genomics, and proteomics have opened vast opportunities for translation of basic science observations to the bedside through clinical research. As an introductory reference it gives clinical investigators in all fields an awareness of the tools required to ensure research protocols are well designed and comply with the rigorous regulatory requirements necessary to maximize the safety of research subjects. Complete with sections on the history of clinical research and ethics, copious figures and charts, and sample documents it serves as an excellent companion text for any course on clinical research and as a must-have reference for seasoned researchers.*Incorporates new chapters on Managing Conflicts of Interest in Human Subjects Research, Clinical Research from the Patient's Perspective, The Clinical Researcher and the Media, Data Management in Clinical Research, Evaluation of a Protocol Budget, Clinical Research from the Industry Perspective, and Genetics in Clinical Research *Addresses the vast opportunities for translation of basic science observations to the bedside through clinical research*Delves into data management and addresses how to collect data and use it for discovery*Contains valuable, up-to-date information on how to obtain funding from the federal government










A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Research Projects and Research Proposals


Book Description

Paul Chapin's guide to writing proposals for scientific research can be used by scientists in any discipline who submit papers to funding agencies to gain support for their research projects. A longtime program officer at the National Science Foundation, Chapin treats the proposal as one part of a larger process of planning a research project, which makes it easier to write and more likely to be effective. The book differs from other guides by treating proposal writing in the larger context of project planning from an insider's perspective. Paul G. Chapin became the first director of the NSF Linguistics Program when it was established in October 1975. He continued as NSF's Program Director for Linguistics until 1999, with three interruptions: one year serving as Deputy Division Director for Behavioral and Neural Sciences, one year's detail as a staff associate to the head of the Office of Information Systems, and a year's sabbatical leave to study mathematics at George Washington University. From 1999 until his retirement in 2001, Chapin served as a senior program officer for cross-disciplinary activities at the NSF. On the occasion of his retirement, the NSF presented him with the Director's Superior Accomplishment Award, and the Linguistic Society of America awarded him the first annual Victoria A. Fromkin Award for Distinguished Service to the Profession.