From Dusty to Dust-free


Book Description

The creation of new stars from cold gas is one of the most fundamental astrophysical processes that can be observed in our own galaxy and in others. At a broad level, the modern phenomenological picture of how stars form is consistent with observations of systems ranging from nearby molecular clouds to the most distant galaxies. Many gaps and limitations in the details of such a picture, however, remain unfilled and unanswered. For example, questions remain about the interplay between star formation and chemical enrichment in blue, metal-poor galaxies and the impact of that relationship in cosmic reionization -- one of the final frontiers of observational extragalactic astrophysics. Meanwhile, on the other end of the electromagnetic and metallicity spectrum, there exists a population of high-redshift, far-infrared-bright, and heavily dust-obscured starbursting galaxies that represent a fleeting but possibly integral stage in the growth of massive galaxies and of dense, large-scale structures like (proto)clusters of galaxies. However, the mechanism(s) that trigger such starbursts, especially in dense environments, remains ambiguous. The research that comprises this dissertation aims to answer two questions that, while both relevant to astronomers' understanding of the birth and evolution of galaxies in the broadest sense, are largely disjoint from one another. These questions are: 1) What are the intermediate- to high-redshift analogs to the sources that reionized the universe at very early times?; and 2) As a function of redshift and/or environment, how common are massively star-forming, dust-obscured galaxies? Because these questions are so different from one another, this dissertation will be split into two major parts. In the first, I present a search in two legacy fields (the GOODS-North and the GOODS-South) for galaxies at high redshift that may be sources of ionizing ultraviolet photons. Such objects are expected to be analogs, in various ways, to the first generation of galaxies, and thus provide clues to the nature of very-high-redshift galaxies that will be discovered en masse by future ground- and space-based observatories. In the second part, I present the spectroscopic confirmation of an overdensity of dusty starbursting galaxies at $z \approx 3.14$, signposting a protocluster of galaxies near the peak of star formation activity in the universe. Compared to similar recent discoveries in the literature, this new protocluster is relatively late-forming and includes several of the most infrared-luminous starbursts currently known. This makes it an excellent laboratory for testing theories of starburst triggering and the subsequent buildup of stellar mass in dense environments. In the final chapter of this dissertation, I reiterate the key results of the research presented in chapters 2, 3, and 5.







The Properties and Evolution of Star Forming Regions Over Cosmic Time


Book Description

Star formation is key to the regulation of galactic environments. Studying the sites of ongoing star formation is therefore critical to understanding the evolution of galaxies over cosmic time. Integral Field Spectrographs (IFS) have allowed astronomers to probe the dynamical processes of galaxies at high redshift, z∼1-3, revealing unique kiloparsec-scale "clumps" of star formation. The relationships between clump size, luminosity, and velocity dispersion are particularly important to understanding clump formation and evolution. These relationships have been measured in a variety of studies but disagreement remains about their nature and possible evolution with redshift. To investigate the cause of these differences, I collected a comprehensive sample of clump observations across redshifts and developed a Bayesian Markov Chain Monte Carlo fitting routine to robustly explore the scaling relationships of star-forming regions. There is evidence of a break into two clump populations based on their star formation rate surface density with differences in slope due to either the formation mode or geometry of the clump and host galaxy disk, but there is added uncertainty from limited observations at small clump sizes. To address this limitation, I observed a sample of compact H II regions in the local starburst galaxy, IC 10, with the Keck Cosmic Web Imager IFS at the W. M. Keck Observatory. I found these H II regions are offset to higher luminosity and velocity dispersion for a given size. These H II regions do not appear to be virialized, and instead show evidence that they are young and expanding. Even in the most compact H II regions, warm gas pressure from photoinization heating provides the dominant contribution to outward pressure and expansion. Improvements in instrumentation are also key to improving studies of the characteristics and evolution of star-forming regions, as well as many other astronomical objects. Liger, an adaptive optics fed IFS and imager for Keck Observatory, will provide improvements in resolution, field of view, and wavelength coverage compared to current instruments. I have developed the mechanical design of three major components of the Liger imager and sequential spectrograph: the filter wheel; selectable cold pupil stop; and mounting stage for the imager detector and IFS pick-off mirrors.







Modelling Feedback Processes, Star Formation and Outflows in High-redshift Galaxies


Book Description

In the Universe, we observe galaxies forming no, or almost no, stars anymore, but astrophysicists do not know yet what physical mechanisms cause their “death”. To give clues to solve the problem, I studied feedback processes from stars and active supermassive black holes, star formation and galactic outflows. Chapter 1 presents all the notions to understand the problem: the characteristics of typical galaxies in the local and distant Universe, galactic outflows, galaxy death, active supermassive black holes, stars, and their feedback processes. In Chapter 2, I describe the numerical techniques I used: the simulation code RAMSES, and the radiative transfer code Cloudy, which I used to develop a computation method to get the ionization state of an entire galaxy. This method is presented in Chapter 3. Chapter 4 studies the coupling between the feedback processes of active supermassive black holes and stars, with the POGO project, Physical Origins of Galactic Outflows. During this thesis, I showed that typical active supermassive black hole cannot suddenly kill their host, even when stellar feedback processes are accounted for, and that their coupling either reduces or enhances the mass outflow rate depending on the mass of the host. In Chapter 5, I give a state-of-the-art about active supermassive black holes before and during my thesis, sum up the conclusions of the work, and give perspectives to enlarge the scope of the study, especially regarding the additional role of cosmic rays in the death of galaxies.







Exploring the Interplay Between Star Formation and Active Galactic Nuclei and the Role of Environment in Galaxy Evolution


Book Description

One of the central goals of extragalactic astronomy is to understand how galaxies grow their stellar mass and central black holes, the connection between star formation and active galactic nuclei (AGN), and the impact of environment on this growth. In this thesis, I utilize multiwavelength surveys that are both deep and wide, advanced computational codes that model the spectral energy distributions of galaxies with and without AGN, as well as state-of-the-art simulations of galaxy evolution in order to explore how galaxy properties are impacted by their surrounding environment and AGN activity. These studies explore galaxies over a redshift range of 0.015 z 0.023 (lookback time of ~ 0.2 to ~ 0.3 Gyr), and over a redshift range of 0.5 z 3.0 (lookback time of ~ 5 to ~ 12 Gyr). The large-area surveys used here provide some of the largest and most statistically robust samples to-date of rare massive galaxies (with stellar mass M [subscript *] 1011 M☉) and extremely luminous AGN (with X-ray luminosity L [subscript X] 1044 erg s−1) out to z ~ 3, thereby limiting the effects of cosmic variance and Poisson statistics. I analyze the observed stellar masses and star formation rates of galaxies as a function of environment and AGN activity, compare the empirical results to theoretical models of galaxy evolution, and discuss the implications of such comparisons. This work will provide significant guidance and constraints to the future development of theoretical models of galaxy growth. In Chapter 2 (Florez et al. 2021, ApJ, 906, 97) I measure the environmental dependence, where environment is defined by the distance to the third nearest neighbor, of multiple galaxy properties inside the Environmental COntext (ECO) catalog. I focus primarily on void galaxies at redshifts z = 0.015 - 0.023, which I define as the 10% of galaxies having the lowest local density. I compare the properties of void and non-void galaxies: baryonic mass, color, fractional stellar mass growth rate (FSMGR), morphology, and gas-to-stellar-mass ratio. The void galaxies typically have lower baryonic masses than galaxies in denser environments, and they display the properties expected of a lower mass population: they have more late-types, are bluer, have higher FSMGR, and are more gas rich. I also control for baryonic mass and investigate the extent to which void galaxies are different at fixed mass. I find that void galaxies are bluer, more gas-rich, and more star forming at fixed mass than non-void galaxies, which is a possible signature of galaxy assembly bias and other environmental processes. Furthermore, I show that these trends persist even at fixed mass and morphology, and I find that voids host a distinct population of early-types that are bluer and more star-forming than the typical red and quenched early-types. In addition to these empirical observational results, I also present theoretical results from mock catalogs with built-in galaxy assembly bias. I show that a simple matching of galaxy properties to (sub)halo properties, such as mass and age, can recover the observed environmental trends in the local galaxy population. In Chapter 3 (Florez et al. 2020, MNRAS, 497, 3273) I investigate the relation between AGN and star formation activity at 0.5 z 3 by analyzing 898 galaxies with high X-ray luminosity AGN (L [subscript X] 1044 erg s−1) and a large comparison sample of ~ 320,000 galaxies without such AGN. My samples are selected from a large (11.8 deg2) area in Stripe 82 that has multi-wavelength (X-ray to far-IR) data. The enormous comoving volume (~ 0.3 Gpc3) at 0.5




Star Formation Efficiency in Extended UV Disks and at High Redshift


Book Description

Perhaps one of the most enigmatic domains of astrophysics is that of galaxy formation and evolution.A galaxy is defined by its stellar and gas contents. Hence, any theory of galaxy formation has to address the question of the formation of stars.Observations show that star formation takes place in dense molecular clouds.Therefore, the efficiency of star formation of a galaxy is determined by its ability to form molecular clouds.The determination of these processes and their efficiency is among the most important issues in our understanding of star formation.The present work studies the star formation laws in a wide range of physical and dynamical conditions, even in low density environmentsand down to molecular cloud scales, as well as high redshift galaxies, to explore the cosmic star formation history.Low density environments, like the outermost disk of galaxies mimic the physical conditions of dwarf galaxies and also that of galaxiesin the early Universe. Across the Hubble time, there was a peak in the star formation rate, at z ~1-2, about ten billions years ago. Then the average star formation rate dropped by a factor 20 down to the present rate. This Ph.D focuses on the star formation efficiency in two contexts: in low environments, like outer galaxy disks and at the epoch the near the peak of star formation.




New Worlds, New Horizons in Astronomy and Astrophysics


Book Description

Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.