Springer Handbook of Global Navigation Satellite Systems


Book Description

This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike.




GNSS – Global Navigation Satellite Systems


Book Description

This book extends the scientific bestseller "GPS - Theory and Practice" to cover Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems. The book refers to GNSS in the generic sense to describe the various existing reference systems for coordinates and time, the satellite orbits, the satellite signals, observables, mathematical models for positioning, data processing, and data transformation. This book is a university-level introductory textbook and is intended to serve as a reference for students as well as for professionals and scientists in the fields of geodesy, surveying engineering, navigation, and related disciplines.




Handbook of Position Location


Book Description

A comprehensive review of position location technology — from fundamental theory to advanced practical applications Positioning systems and location technologies have become significant components of modern life, used in a multitude of areas such as law enforcement and security, road safety and navigation, personnel and object tracking, and many more. Position location systems have greatly reduced societal vulnerabilities and enhanced the quality of life for billions of people around the globe — yet limited resources are available to researchers and students in this important field. The Handbook of Position Location: Theory, Practice, and Advances fills this gap, providing a comprehensive overview of both fundamental and cutting-edge techniques and introducing practical methods of advanced localization and positioning. Now in its second edition, this handbook offers broad and in-depth coverage of essential topics including Time of Arrival (TOA) and Direction of Arrival (DOA) based positioning, Received Signal Strength (RSS) based positioning, network localization, and others. Topics such as GPS, autonomous vehicle applications, and visible light localization are examined, while major revisions to chapters such as body area network positioning and digital signal processing for GNSS receivers reflect current and emerging advances in the field. This new edition: Presents new and revised chapters on topics including localization error evaluation, Kalman filtering, positioning in inhomogeneous media, and Global Positioning (GPS) in harsh environments Offers MATLAB examples to demonstrate fundamental algorithms for positioning and provides online access to all MATLAB code Allows practicing engineers and graduate students to keep pace with contemporary research and new technologies Contains numerous application-based examples including the application of localization to drone navigation, capsule endoscopy localization, and satellite navigation and localization Reviews unique applications of position location systems, including GNSS and RFID-based localization systems The Handbook of Position Location: Theory, Practice, and Advances is valuable resource for practicing engineers and researchers seeking to keep pace with current developments in the field, graduate students in need of clear and accurate course material, and university instructors teaching the fundamentals of wireless localization.




Position, Navigation, and Timing Technologies in the 21st Century


Book Description

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com




Space Antenna Handbook


Book Description

This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications. Key Features: Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applications Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas This book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering, It also aids engineers technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.




Global Navigation Satellite Systems


Book Description

The Global Positioning System (GPS) has revolutionized the measurement of position, velocity, and time. It has rapidly evolved into a worldwide utility with more than a billion receiver sets currently in use that provide enormous benefits to humanity: improved safety of life, increased productivity, and wide-spread convenience. Global Navigation Satellite Systems summarizes the joint workshop on Global Navigation Satellite Systems held jointly by the U.S. National Academy of Engineering and the Chinese Academy of Engineering on May 24-25, 2011 at Hongqiao Guest Hotel in Shanghai, China. "We have one world, and only one set of global resources. It is important to work together on satellite navigation. Competing and cooperation is like Yin and Yang. They need to be balanced," stated Dr. Charles M. Vest, President of the National Academy of Engineering, in the workshop's opening remarks. Global Navigation Satellite Systems covers the objectives of the workshop, which explore issues of enhanced interoperability and interchangeability for all civil users aimed to consider collaborative efforts for countering the global threat of inadvertent or illegal interference to GNSS signals, promotes new applications for GNSS, emphasizing productivity, safety, and environmental protection. The workshop featured presentations chosen based on the following criteria: they must have relevant engineering/technical content or usefulness; be of mutual interest; offer the opportunity for enhancing GNSS availability, accuracy, integrity, and/or continuity; and offer the possibility of recommendations for further actions and discussions. Global Navigation Satellite Systems is an essential report for engineers, workshop attendees, policy makers, educators, and relevant government agencies.







GPS


Book Description

This, the second edition of the hugely practical reference and handbook describes kinematic, static and dynamic Global Positioning System theory and applications. It is primarily based upon source-code descriptions of the KSGSoft program developed by the author and his colleagues and used in the AGMASCO project of the EU. This is the first book to report the unified GPS data processing method and algorithm that uses equations for selectively eliminated equivalent observations.




Handbook of Satellite Orbits


Book Description

Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those involved in space exploration will find this information valuable. Michel Capderou’s book is an essential treatise in orbital mechanics for all students, lecturers and practitioners in this field, as well as other aerospace systems engineers. —Charles Elachi, Director, NASA Jet Propulsion Laboratory




GNSS Remote Sensing


Book Description

The versatile and available GNSS signals can detect the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. Ground-based atmospheric sensing, space-borne atmospheric sensing, reflectometry, ocean remote sensing, hydrology sensing as well as cryosphere sensing with the GNSS will be discussed per chapter in the book.