Handbook of Humidity Measurement, Volume 3


Book Description

Because of unique water properties, humidity affects materials and many living organisms, including humans. Humidity control is important in various fields, from production management to creating a comfortable living environment. The range of materials that can be used in the development of humidity sensors is very broad, and the third volume of the Handbook of Humidity Measurement offers an analysis on various humidity-sensitive materials and sensor technologies used in the fabrication of humidity sensors and methods acceptable for their testing. Additional features include: numerous strategies for the fabrication and characterization of humidity-sensitive materials and sensing structures used in sensor applications, methods and properties to develop smaller, cheaper, more robust, and accurate devices with better sensitivity and stability, a guide to sensor selection and an overview of the humidity sensor market, and new technology solutions for integration, miniaturization, and specificity of the humidity sensor calibration. Handbook of Humidity Measurement, Volume 3: Sensing Materials and Technologies provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, and university students and professors interested in solutions to humidity measurement tasks. Despite the fact that this book is devoted to the humidity sensors, it can be used as a basis for understanding fundamentals of any gas sensor operation and development.




Handbook of Humidity Measurement, Volume 1


Book Description

The first volume of The Handbook of Humidity Measurement focuses on the review of devices based on optical principles of measurement such as optical UV, fluorescence hygrometers, optical and fiber-optic sensors of various types. Numerous methods for monitoring the atmosphere have been developed in recent years, based on measuring the absorption of electromagnetic field in different spectral ranges. These methods, covering the optical (FTIR and Lidar techniques), as well as a microwave and THz ranges are discussed in detail in this volume. The role of humidity-sensitive materials in optical and fiber-optic sensors is also detailed. This volume describes the reasons for controlling the humidity, features of water and water vapors, and units used for humidity measurement.




Handbook of Humidity Measurement, Volume 2


Book Description

Because of unique water properties, humidity affects many living organisms, including humans and materials. Humidity control is important in various fields, from production management to creating a comfortable living environment. The second volume of The Handbook of Humidity Measurement is entirely devoted to the consideration of different types of solid-state devices developed for humidity measurement. This volume discusses the advantages and disadvantages about the capacitive, resistive, gravimetric, hygrometric, field ionization, microwave, Schottky barrier, Kelvin probe, field-effect transistor, solid-state electrochemical, and thermal conductivity-based humidity sensors. Additional features include: Provides a comprehensive analysis of the properties of humidity-sensitive materials, used for the development of such devices. Describes numerous strategies for the fabrication and characterization of humidity sensitive materials and sensing structures used in sensor applications. Explores new approaches proposed for the development of humidity sensors. Considers conventional devices such as phsychometers, gravimetric, mechanical (hair), electrolytic, child mirror hygrometers, etc., which were used for the measurement of humidity for several centuries. Handbook of Humidity Measurement, Volume 2: Electronic and Electrical Humidity Sensors provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, as well as university students and professors interested in solutions to humidity measurement tasks as well as in understanding fundamentals of any gas sensor operation and development.




Handbook of Temperature Measurement Vol. 3


Book Description

Volume 3 of the Handbook of Temperature Measurement, prepared by the CSIRO National Measurement Laboratory, Australia, covers the principles behind the behaviour and misbehaviour of thermocouples and gives detailed information on the properties of common thermocouple materials. It also discusses the use of thermocouples and their calibration. Other topics include the calculation of uncertainties and the problems of multi-site measurements (e.g. furnace testing). The text is entirely authored by Robin E. Bentley.




Complex and Composite Metal Oxides for Gas, VOC, and Humidity Sensors, Volume 1


Book Description

Complex and Composite Metal Oxides for Gas, VOC, and Humidity Sensors focuses on an overview of the advanced nanocomposite metal oxide materials for use in sensors for environmental monitoring applications. Volume 1 Fundamentals and Approaches introduces the ground rules essential for the development of smart gas, VOC and humidity sensors. This volume familiarizes researchers with the different sensors (resistive, electrolyte, FET, optical etc.) developed on various properties that includes electrical, SPR, luminescence, fiber optics etc. fabricated using metal oxide hybrids and nanocomposites. - Introduces the fundamentals of electrical and optical gas and humidity sensors - Reviews metal oxide hybrid materials for gas and humidity sensor applications, including metal oxide/polymer and metal oxide/carbon composite materials - Discusses complex metal oxide compounds and composite materials for use in gas, VOC, and humidity sensors




Handbook of Temperature Measurement Vol. 2


Book Description

Volume 2 of the Handbook of Temperature Measurement, prepared by the CSIRO National Measurement Laboratory, Australia, discusses the operation, calibration and usage of resistance and liquid-in-glass thermometers. Both standard-platinum-resistance thermometers and industrial-resistance thermometers are examined, and details on a variety of resistance-measuring techniques are given. Also included is a final version of the official text of the International Temperature Scale 1990 (ITS-90). The authors of this volume are John J. Connolly and E. Corina Horrigan.




HANDBOOK OF TEMPERATURE MEASUREMENT.


Book Description

Volume 1 of the Handbook of Temperature Measurement, prepared by the CSIRO National Measurement Laboratory, Australia, details the principles and techniques involved in the measurement of humidity, in cryogenic and radiation thermometry and a variety of unconventional methods of temperature measurement. Other topics considered are thermal conductivity and the traceability of measurement. Authors in this volume include Mark J. Ballico, Edwin C. Morris, Gary Rosengarten, Anna Schneider, Glenda Sandars, Laurie M. Besley, Jeffrey Tapping, and Anthony J. Farmer.




Water Vapor Measurement


Book Description

Offering all aspects of humidity measurement and instrumentation, this work includes rudiments and theory, common applications, advantages and limitations of frequently-used sensors and techniques, and guidelines for installation, maintenance and calibration. The disk is intended for easy conversions of humidity parameters and units.




Infrared Thermal Imaging


Book Description

This new up-to-date edition of the successful handbook and ready reference retains the proven concept of the first, covering basic and advanced methods and applications in infrared imaging from two leading expert authors in the field. All chapters have been completely revised and expanded and a new chapter has been added to reflect recent developments in the field and report on the progress made within the last decade. In addition there is now an even stronger focus on real-life examples, with 20% more case studies taken from science and industry. For ease of comprehension the text is backed by more than 590 images which include graphic visualizations and more than 300 infrared thermography figures. The latter include many new ones depicting, for example, spectacular views of phenomena in nature, sports, and daily life.




Blackbody Radiometry


Book Description

This book, the first of a two-volume set, focuses on the basic physical principles of blackbody radiometry and describes artificial sources of blackbody radiation, widely used as sources of optical radiation, whose energy characteristics can be calculated on the base of fundamental physical laws. Following a review of radiometric quantities, radiation laws, and radiative heat transfer, it introduces the basic principles of blackbody radiators design, details of their practical implementation, and methods of measuring their defining characteristics, as well as metrological aspects of blackbody-based measurements. Chapters are dedicated to the effective emissivity concept, methods of increasing effective emissivities, their measurement and modeling using the Monte Carlo method, techniques of blackbody radiators heating, cooling, isothermalization, and measuring their temperature. An extensive and comprehensive reference source, this book is of considerable value to students, researchers, and engineers involved in any aspect of blackbody radiometry.