Handbook of Industrial Polyethylene and Technology


Book Description

This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.




Handbook of Industrial Polyethylene and Technology


Book Description

This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.




UHMWPE Biomaterials Handbook


Book Description

UHMWPE Biomaterials Handbook describes the science, development, properties and application of of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. This material is currently used in 1.4 million patients around the world every year for use in the hip, knee, upper extremities, and spine. Since the publication of the 1st edition there have been major advances in the development and clinical adoption of highly crosslinked UHMWPE for hip and knee replacement. There has also been a major international effort to introduce Vitamin E stabilized UHMWPE for patients. The accumulated knowledge on these two classes of materials are a key feature of the 2nd edition, along with an additional 19 additional chapters providing coverage of the key engineering aspects (biomechanical and materials science) and clinical/biological performance of UHMWPE, providing a more complete reference for industrial and academic materials specialists, and for surgeons and clinicians who require an understanding of the biomaterials properties of UHMWPE to work successfully on patient applications. - The UHMWPE Handbook is the comprehensive reference for professionals, researchers, and clinicians working with biomaterials technologies for joint replacement - New to this edition: 19 new chapters keep readers up to date with this fast moving topic, including a new section on UHMWPE biomaterials; highly crosslinked UHMWPE for hip and knee replacement; Vitamin E stabilized UHMWPE for patients; clinical performance, tribology an biologic interaction of UHMWPE - State-of-the-art coverage of UHMWPE technology, orthopedic applications, biomaterial characterisation and engineering aspects from recognised leaders in the field




Handbook of Polyethylene Pipe


Book Description

Published by the Plastics Pipe Institute (PPI), the Handbook describes how polyethylene piping systems continue to provide utilities with a cost-effective solution to rehabilitate the underground infrastructure. The book will assist in designing and installing PE piping systems that can protect utilities and other end users from corrosion, earthquake damage and water loss due to leaky and corroded pipes and joints.




PEEK Biomaterials Handbook


Book Description

PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Covering materials science, tribology and applications Provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications







Fire Retardancy of Polymeric Materials


Book Description

The third edition of Fire Retardancy of Polymeric Materials provides a single source for all aspects of this highly challenging field of applied research. This authoritative book covers design and non-fire requirements that drive how these materials are fire protected. Detailed study and consideration of chemistry, physics, materials science, economic issues and fire safety science is necessary to address considerations of mechanical, thermal, environmental, and end-use requirements on top of fire protection means that the field requires. This thoroughly revised new edition continues to offer comprehensive coverage of the scientific approach for those developing fire safe materials. It covers new topics such as bio-based materials, regulatory issues, recycling, newer flame retardant chemical classes, and more details on how to flame retard materials for specific market applications. Written by a team of experts, this book covers the fundamentals of polymer burning and combustion and how to apply fire protection or flame-retardant chemistries to specific material classes and applications. The book is written for material scientists and fire safety scientists who seek to develop new fire safe materials or understand why materials burn in our modern environment. Features Connects fundamentals of material flammability to practical fire safety needs Covers current fire safety requirements and regulations affecting flame retardant selection Provides information on chemical structure-property relationships for flame retardancy Provides practical guidance on how to design fire safe materials for specific fire risk scenarios The new edition is expanded to 32 chapters and all chapters are updated and revised with the newest information







Thermoplastics and Thermoplastic Composites


Book Description

This book bridges the technology and business aspects of thermoplastics, providing a guide designed for engineers working in real-world industrial settings. The author explores the criteria for material selection, provides a detailed guide to each family of thermoplastics, and also explains the various processing options for each material type. More than 30 families of thermoplastics are described with information on their advantages and drawbacks, special grades, prices, transformation processes, applications, thermal behaviour, technological properties (tenacity, friction, dimensional stability), durability (ageing, creep, fatigue), chemical and fire behaviour, electrical properties, and joining possibilities. Biron explores the technological properties and economics of the major thermoplastics and reinforced thermoplastics, such as polyethylene, and emerging polymers such as polybenzimidazole, Thermoplastic Elastomers (TPEs) and bioplastics. In the second edition, a new section 'plastics solutions for practical problems' provides over 25 case studies illustrating a wide range of design and production challenges across the spectrum of thermoplastics, from metal and glass replacement solutions, to fire retardant plastics and antimicrobials. In addition, Biron provides major new material on bioplastics and wood plastic composites (WPCs), and fully updated data throughout. Combining materials data, information on processing techniques, and economic aspects (pricing), Biron provides a unique end-to-end approach to the selection and use of materials in the plastics industry and related sectors Includes a new section of case studies, illustrating best practice across a wide range of applications and industry sectors New material on bioplastics and sustainable composites




Riegel's Handbook of Industrial Chemistry


Book Description

The aim of this book is to present in a single volume an up-to-date account of the chemistry and chemical engineering which underlie the major areas of the chemical process industry. This most recent edition includes several new chapters which comprise important threads in the industry's total fabric. These new chapters cover waste minimization, safety considerations in chemical plant design and operation, emergency response planning, and statistical applications in quality control and experimental planning. Together with the chapters on chemical industry economics and wastewater treatment~ they provide a unifying base on which the reader can most effectively apply the information provided in the chapters which describe the various areas of the chemical process industries. The ninth edition of this established reference work contains the contributions of some fifty experts from industry, government, and academe. I have been humbled by the breadth and depth of their knowledge and expertise and by the willingness and enthusiasm with which they shared their knowledge and insights. They have, without exception, been unstinting in their efforts to make their respective chapters as complete and informative as possible within the space available. Errors of omission, duplication, and shortcomings in organization are mine. Grateful acknowledgment is made to the editors of technical journals and publishing houses for permission to reproduce illustrations and other materials and to the many industrial concerns which contributed drawings and photographs. Comments and criticisms by readers will be welcome.