Handbook of Layered Materials


Book Description

Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of




Handbook of Layered Materials


Book Description

Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of




Handbook of Layered Materials


Book Description

Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of cutting-edge research results. Outlines modern usages of clays and other layered materials, including catalytic and photocatalytic applications. With chapters that explain basic concepts first before delving into more scientifically complex topics, the Handbook of Layered Materials Examines chemistry of clays, pillared clays, and pillared clay heterostructures Scrutinizes layered zirconium phosphates and phosphonates, double hydroxides, manganese oxides, metal chalcogenides, and polysilicates Offers clear descriptions of clay-organic interactions and devotes one chapter specifically to nitroaromatic compound sorption Covers findings in photochemistry and the molecular modeling of surface chemistry Reports recent developments in synthesis, characterization, and host-guest chemistry Contains over 2300 current references, formatting many into expedient tables The companion publication to the lauded Handbook of Zeolite Science and Technology (Marcel Dekker, Inc.) from the same expert editors, this reference is ideal for materials chemists and engineers; chemical engineers; and graduate-level students in these disciplines.




Layered Double Hydroxides


Book Description

D.G. Evans, R.C.T. Slade: Structural Aspects of Layered Double Hydroxides.- J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan: Preparation of Layered Double Hydroxides.- C. Taviot-Gueho, F. Leroux: In Situ Polymerization and Intercalation of Polymers in Layered Double Hydroxides.- G.R. Williams, A.I. Khan, D. O'Hare: Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-Ray Powder Diffraction.- F. Li, X. Duan: Applications of Layered Double Hydroxides




Intercalated Layered Materials


Book Description

Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.




Handbook of Clay Science


Book Description

The first edition of the Handbook of Clay Science published in 2006 assembled the scattered literature on the varied and diverse aspects that make up the discipline of clay science. The topics covered range from the fundamental structures (including textures) and properties of clays and clay minerals, through their environmental, health and industrial applications, to their analysis and characterization by modern instrumental techniques. Also included are the clay-microbe interaction, layered double hydroxides, zeolites, cement hydrates, and genesis of clay minerals as well as the history and teaching of clay science. The 2e adds new information from the intervening 6 years and adds some important subjects to make this the most comprehensive and wide-ranging coverage of clay science in one source in the English language. - Provides up-to-date, comprehensive information in a single source - Covers applications of clays, as well as the instrumental analytical techniques - Provides a truly multidisciplinary approach to clay science




Minerals as Advanced Materials I


Book Description

This book comprises papers resulting from the 1st International workshop ‘Minerals as Advanced Materials I’. It is intended as an exchange of ideas between mineralogists and material scientists. The aim is to identify minerals and mineral objects that have or potentially have unique physical, chemical and structural properties that are of interest from the viewpoint of applied mineralogy and material science. The author studied Crystallography at the St.Petersburg State University.




Photofunctional Layered Materials


Book Description

Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors




Handbook of Graphene, Volume 1


Book Description

This unique multidisciplinary 8-volume set focuses on the emerging issues concerning graphene materials and provides a shared platform for both researcher and industry. The Handbook of Graphene comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of the advanced materials. The Handbook of Graphene comprises 140 chapters from world renowned experts. Volume 1 is solely focused on Growth, Synthesis, and Functionalization of Graphene. Some of the important topics include but not limited to: Graphite in metallic materials-growths, structures and defects of spheroidal graphite in ductile iron; synthesis and quality optimization; methods of synthesis and physico-chemical properties of fluorographenes; graphene-SiC reinforced hybrid composite foam: response to high strain rate deformation; atomic structure and electronic properties of few-layer graphene on SiC(001); features and prospects for epitaxial graphene on SiC; graphitic carbon/graphene on Si(111) via direct deposition of solid-state carbon atoms: growth mechanism and film characterization; chemical reactivity and variation in electronical properties of graphene on Ni(111) and reduced graphene oxide; chlorophyll and graphene: a new paradigm of biomimetic symphony; graphene structures: from preparations to applications; three-dimensional graphene-based structures: production methods, properties and applications; electrochemistry of graphene materials; hydrogen functionalized graphene nanostructure material for spintronic application; the impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene; exploiting graphene as an efficient catalytic template for organic transformations: synthesis, characterization and activity evaluation of graphene-based catalysts; exfoliated graphene based 2D materials; synthesis and catalytic behaviors; functionalization of graphene with molecules and/or nanoparticles for advanced applications; carbon allotropes "between diamond and graphite": how to create semiconductor properties in graphene and related structures.




Layered 2D Materials and Their Allied Applications


Book Description

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book’s fifteen chapters: • The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. • 2D black phosphorus (BP) and its practical application in various fields. • Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. • The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. • 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. • The structure and applications of 2D perovskites. • The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. • The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. • The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. • The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. • The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. • The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. • The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. • The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. • The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.