Measurement of Higgs Boson Production Cross Sections in the Diphoton Channel


Book Description

This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy √s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H → γγ and H → 4l channels using the 36 fb−1 dataset.




ATLAS Measurements of the Higgs Boson Coupling to the Top Quark in the Higgs to Diphoton Decay Channel


Book Description

During Run 2 of the Large Hadron Collider, the ATLAS experiment recorded proton-proton collision events at 13 TeV, the highest energy ever achieved in a collider. Analysis of this dataset has provided new opportunities for precision measurements of the Higgs boson, including its interaction with the top quark. The Higgs-top coupling can be directly probed through the production of a Higgs boson in association with a top-antitop quark pair (ttH). The Higgs to diphoton decay channel is among the most sensitive for ttH measurements due to the excellent diphoton mass resolution of the ATLAS detector and the clean signature of this decay. Event selection criteria were developed using novel Machine Learning techniques to target ttH events, yielding a precise measurement of the ttH cross section in the diphoton channel and a 6.3 $\sigma$ observation of the ttH process in combination with other decay channels, as well as stringent limits on CP violation in the Higgs-top coupling.




Discovery and Measurement of the Higgs Boson in the WW Decay Channel


Book Description

This thesis describes the stand-alone discovery and measurement of the Higgs boson in its decays to two W bosons using the Run-I ATLAS dataset. This is the most precise measurement of gluon-fusion Higgs boson production and is among the most significant results attained at the LHC. The thesis provides an exceptionally clear exposition on a complicated analysis performed by a large team of researchers. Aspects of the analysis performed by the author are explained in detail; these include new methods for evaluating uncertainties on the jet binning used in the analysis and for estimating the background due to associated production of a W boson and an off-shell photon. The thesis also describes a measurement of the WW cross section, an essential background to Higgs boson production. The primary motivation of the LHC was to prove or disprove the existence of the Higgs boson. In 2012, CERN announced this discovery and the resultant ATLAS publication contained three decay channels: gg, ZZ, and WW.




Search for the Standard Model Higgs Boson in the H → ZZ → l + l - qq Decay Channel at CMS


Book Description

The theoretical foundations of the Standard Model of elementary particles relies on the existence of the Higgs boson, a particle which has been revealed for the first time by the experiments run at the Large Hadron Collider (LHC) in 2012. As the Higgs boson is an unstable particle, its search strategies were based on its decay products. In this thesis, Francesco Pandolfi conducted a search for the Higgs boson in the H → ZZ → l + l - qq Decay Channel with 4.6 fb -1 of 7 TeV proton-proton collision data collected by the Compact Muon Solenoid (CMS) experiment. The presence of jets in the final state poses a series of challenges to the experimenter: both from a technical point of view, as jets are complex objects and necessitate of ad-hoc reconstruction techniques, and from an analytical one, as backgrounds with jets are copious at hadron colliders, therefore analyses must obtain high degrees of background rejection in order to achieve competitive sensitivity. This is accomplished by following two directives: the use of an angular likelihood discriminant, capable of discriminating events likely to originate from the decay of a scalar boson from non-resonant backgrounds, and by using jet parton flavor tagging, selecting jets compatible with quark hadronization and discarding jets more likely to be initiated by gluons. The events passing the selection requirements in 4.6 fb -1 of data collected by the CMS detector are examined, in the search of a possible signal compatible with the decay of a heavy Higgs boson. The thesis describes the statistical tools and the results of this analysis. This work is a paradigm for studies of the Higgs boson with final states with jets. The non-expert physicists will enjoy a complete and eminently readable description of a proton-proton collider analysis. At the same time, the expert reader will learn the details of the searches done with jets at CMS.




60 Years Of Cern Experiments And Discoveries


Book Description

The book is a compilation of the most important experimental results achieved during the past 60 years at CERN - from the mid-1950s to the latest discovery of the Higgs particle. Covering the results from the early accelerators at CERN to those most recent at the LHC, the contents provide an excellent review of the achievements of this outstanding laboratory. Not only presented is the impressive scientific progress achieved during the past six decades, but also demonstrated is the special way in which successful international collaboration exists at CERN.




Adventure Of The Large Hadron Collider, The: From The Big Bang To The Higgs Boson


Book Description

An introduction to the world of quarks and leptons, and of their interactions governed by fundamental symmetries of nature, as well as an introduction to the connection that exists between worlds of the infinitesimally small and the infinitely large.The book begins with a simple presentation of the theoretical framework, the so-called Standard Model, which evolved gradually since the 1960s. The key experiments establishing it as the theory of elementary particle physics, but also its missing pieces and conceptual weaknesses are introduced. The book proceeds with the extraordinary story of the Large Hadron Collider at CERN — the largest purely scientific project ever realized. Conception, design and construction by worldwide collaborations of the detectors of size and complexity without precedent in scientific history are discussed. The book then offers the reader a state-of-the art (2020) appreciation of the depth and breadth of the physics exploration performed by the LHC experiments: the study of new forms of matter, the understanding of symmetry-breaking phenomena at the fundamental level, the exciting searches for new physics such as dark matter, additional space dimensions, new symmetries, and more. The adventure of the LHC culminated in the discovery of the Higgs boson in 2012 (Nobel Prize in Physics in 2013). The last chapter of this book describes the plans for the LHC during the next 15 years of exploitation and improvement, and the possible evolution of the field and future collider projects under consideration.The authors are researchers from CERN, CEA and CNRS (France), and deeply engaged in the LHC program: D Denegri in the CMS experiment, C Guyot, A Hoecker and L Roos in the ATLAS experiment. Some of them are involved since the inception of the project. They give a lively and accessible inside view of this amazing scientific and human adventure.




A Boson Learned from its Context, and a Boson Learned from its End


Book Description

This thesis develops fundamental ideas and advanced techniques for studying the Higgs boson’s interactions with the known matter and force particles. The Higgs boson appears as an excitation of the Higgs field, which permeates the vacuum. Several other phenomena in our Universe, such as dark energy, dark matter, and the abundance of matter over antimatter, remain unexplained. The Higgs field may prove to be the connection between our known world and the “dark” world, and studies of the Higgs boson's interactions are essential to reveal possible new phenomena. The unique feature of this work is simultaneous measurement of the Higgs boson’s associated production (its context, to use the language of the title) and its decay (its end), while allowing for multiple parameters sensitive to new phenomena. This includes computer simulation with Monte Carlo techniques of the complicated structure of the Higgs boson interactions, the matrix-element calculation of per-event likelihoods for optimal observables, and advanced fitting methods with hundreds of intricate components that cover all possible parameters and quantum mechanical interference. This culminates in the most advanced analysis of LHC data in the multi-parameter approach to Higgs physics in its single golden four-lepton decay channel to date. Optimization of the CMS detector’s silicon-based tracking system, essential for these measurements, is also described.




The Black Book of Quantum Chromodynamics


Book Description

This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.




Gauge Theories of the Strong, Weak, and Electromagnetic Interactions


Book Description

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies




The H Boson


Book Description

This volume provides a detailed description of the seminal theoretical construction in 1964, independently by Robert Brout and Francois Englert, and by Peter W. Higgs, of a mechanism for short-range fundamental interactions, now called the Brout-Englert-Higgs (BEH) mechanism. It accounts for the non-zero mass of elementary particles and predicts the existence of a new particle - an elementary massive scalar boson. In addition to this the book describes the experimental discovery of this fundamental missing element in the Standard Model of particle physics. The H Boson, also called the Higgs Boson, was produced and detected in the Large Hadron Collider (LHC) of CERN near Geneva by two large experimental collaborations, ATLAS and CMS, which announced its discovery on the 4th of July 2012.This new volume of the Poincaré Seminar Series, The H Boson, corresponds to the nineteenth seminar, held on November 29, 2014, at Institut Henri Poincaré in Paris.