Handbook of Magnetic Measurements


Book Description

Collecting state-of-the-art knowledge from information scattered throughout the literature, this handbook describes magnetic materials and sensors, the testing of magnetic materials, and applications of magnetic measurements. It presents an up-to-date, accessible account of modern magnetic measurement techniques. The book discusses the fundamentals of magnetism and covers contemporary magnetic materials and sensors. It also explores applications of magnetic diagnostics in medicine, magnetoarcheology, and magnetic imaging. An extensive list of references is included at the end of each chapter.




Handbook of Magnetic Materials


Book Description

Handbook of Magnetic Materials, Volume 29, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors on topics such as spin-orbit torque. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Magnetic Materials series




Magnetic Measurement Techniques for Materials Characterization


Book Description

This book discusses the most commonly used techniques for characterizing magnetic material properties and their applications. It provides a comprehensive and easily digestible collection and review of magnetic measurement techniques. It also examines the underlying operating principles and techniques of magnetic measurements, and presents current examples where such measurements and properties are relevant. Given the pervasive nature of magnetic materials in everyday life, this book is a vital resource for both professionals and students wishing to deepen their understanding of the subject.




Handbook of Magnetic Phenomena


Book Description

The general theory of magnetism and the vast range of individual phe nomena it embraces have already been examined in many volumes. Spe cialists hardly need help in charting their way through the maze of pub lished information. At the same time, a nonspecialist might easily be discouraged by this abundance. Most texts are restricted in their coverage, and their concepts may well appear to be disorganized when the uninitiated attempt to consider them in their totality. Since the subject is already thoroughly researched with very little new information added year by year, this is hardly a satisfactory state of affairs. By now, it should be possible for anyone with even a minimum of technical competence to feel com pletely at home with all of the basic magnetic principles. The present volume addresses this issue by stressing simplicity-sim plicity of order and simplicity of range as well as simplicity of detail. It proposes a pattern of logical classification based on the electronic con sequences that result whenever any form of matter interacts with any kind of energy. An attempt has been made to present each phenomenon of interest in its most visually graphic form while reducing the verbal de scription to the minimum needed to back up the illustrations. This might be called a Life magazine type of approach, in which each point is prin cipally supported by a picture. The illustrations make use of two (perhaps unique) conventions.




Handbook of Magnetism and Magnetic Materials


Book Description

This handbook presents a comprehensive survey of magnetism and magnetic materials. The dramatic advances in information technology and electromagnetic engineering make it necessary to systematically review the approved key knowledge and summarize the state of the art in this vast field within one seminal reference work. The book thus delivers up-to-date and well-structured information on a wealth of topics encompassing all fundamental aspects of the underlying physics and materials science, as well as advanced experimental methodology and applications. It features coverage of the host of fascinating and complex phenomena that arise from the use of magnetic fields in e.g. chemistry and biology. Edited by two internationally renowned scholars and featuring authored chapters from leading experts in the field, Springer’s Handbook of Magnetism and Magnetic Materials is an invaluable source of essential reference information for a broad audience of students, researchers, and magnetism professionals.




Handbook of Neural Activity Measurement


Book Description

Underlying principles of the various techniques are explained, enabling neuroscientists to extract meaningful information from their measurements.




Springer Handbook of Metrology and Testing


Book Description

This Springer Handbook of Metrology and Testing presents the principles of Metrology – the science of measurement – and the methods and techniques of Testing – determining the characteristics of a given product – as they apply to chemical and microstructural analysis, and to the measurement and testing of materials properties and performance, including modelling and simulation. The principal motivation for this Handbook stems from the increasing demands of technology for measurement results that can be used globally. Measurements within a local laboratory or manufacturing facility must be able to be reproduced accurately anywhere in the world. The book integrates knowledge from basic sciences and engineering disciplines, compiled by experts from internationally known metrology and testing institutions, and academe, as well as from industry, and conformity-assessment and accreditation bodies. The Commission of the European Union has expressed this as there is no science without measurements, no quality without testing, and no global markets without standards.




Springer Handbook of Materials Measurement Methods


Book Description

This Handbook compiles advanced methods for materials measurement and characterization from the macroscopic to the nano-scale. Materials professionals need not only handbooks of materials data but clear guidelines and standards for how to measure the full spectrum of materials characteristics of new materials ans systems. Since materials science forms a bridge between the more traditonal fields of physics, engineering, and chemistry, unifying the varying perspectives and covering the full gamut of properties also serves a useful purpose. This handbook is the first dedicated to these practical and important considerations.




Handbook of Measurement in Science and Engineering, Volume 3


Book Description

A multidisciplinary reference of engineering measurement tools, techniques, and applications "When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the stage of science." — Lord Kelvin Measurement is at the heart of any engineering and scientific discipline and job function. Whether engineers and scientists are attempting to state requirements quantitatively and demonstrate compliance; to track progress and predict results; or to analyze costs and benefits, they must use the right tools and techniques to produce meaningful data. The Handbook of Measurement in Science and Engineering is the most comprehensive, up-to-date reference set on engineering and scientific measurements—beyond anything on the market today. Encyclopedic in scope, Volume 3 covers measurements in physics, electrical engineering and chemistry: Laser Measurement Techniques Magnetic Force Images using Capacitive Coupling Effect Scanning Tunneling Microscopy Measurement of Light and Color The Detection and Measurement of Ionizing Radiation Measuring Time and Comparing Clocks Laboratory-Based Gravity Measurement Cryogenic Measurements Temperature-Dependent Fluorescence Measurements Voltage and Current Transducers for Power Systems Electric Power and Energy Measurement Chemometrics for the Engineering and Measurement Sciences Liquid Chromatography Mass Spectroscopy Measurements of Nitrotyrosine-Containing Proteins Fluorescence Spectroscopy X-Ray Absorption Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy Near Infrared (NIR) Spectroscopy Nanomaterials Properties Chemical Sensing Vital for engineers, scientists, and technical managers in industry and government, Handbook of Measurement in Science and Engineering will also prove ideal for academics and researchers at universities and laboratories.




Measurement, Instrumentation, and Sensors Handbook, Second Edition


Book Description

The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 96 existing chapters Covers instrumentation and measurement concepts, spatial and mechanical variables, displacement, acoustics, flow and spot velocity, radiation, wireless sensors and instrumentation, and control and human factors A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications.