Handbook of Micrometeorology


Book Description

The Handbook of Micrometeorology is the most up-to-date reference for micrometeorological issues and methods related to the eddy covariance technique for estimating mass and energy exchange between the terrestrial biosphere and the atmosphere. It provides useful insight for interpreting estimates of mass and energy exchange and understanding the role of the terrestrial biosphere in global environmental change.







A Brief Practical Guide to Eddy Covariance Flux Measurements


Book Description

This book was written to familiarize beginners with general theoretical principles, requirements, applications, and processing steps of the Eddy Covariance method. It is intended to assist in further understanding the method, and provides references such as textbooks, network guidelines and journal papers. It is also intended to help students and researchers in field deployment of instruments used with the Eddy Covariance method, and to promote its use beyond micrometeorology.




Micrometeorology


Book Description




Eddy Covariance


Book Description

This highly practical handbook is an exhaustive treatment of eddy covariance measurement that will be of keen interest to scientists who are not necessarily specialists in micrometeorology. The chapters cover measuring fluxes using eddy covariance technique, from the tower installation and system dimensioning to data collection, correction and analysis. With a state-of-the-art perspective, the authors examine the latest techniques and address the most up-to-date methods for data processing and quality control. The chapters provide answers to data treatment problems including data filtering, footprint analysis, data gap filling, uncertainty evaluation, and flux separation, among others. The authors cover the application of measurement techniques in different ecosystems such as forest, crops, grassland, wetland, lakes and rivers, and urban areas, highlighting peculiarities, specific practices and methods to be considered. The book also covers what to do when you have all your data, summarizing the objectives of a database as well as using case studies of the CarboEurope and FLUXNET databases to demonstrate the way they should be maintained and managed. Policies for data use, exchange and publication are also discussed and proposed. This one compendium is a valuable source of information on eddy covariance measurement that allows readers to make rational and relevant choices in positioning, dimensioning, installing and maintaining an eddy covariance site; collecting, treating, correcting and analyzing eddy covariance data; and scaling up eddy flux measurements to annual scale and evaluating their uncertainty.




Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications


Book Description

The “Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates†book has been created to familiarize the reader with the general theoretical principles, requirements, applications, and planning and processing steps of the eddy covariance method. It is intended to assist readers in furthering their understanding of the method, and provide references such as micrometeorology textbooks, networking guidelines and journal papers. In particular, it is designed to help scientific, industrial, agricultural, and regulatory research projects and monitoring programs with field deployment of the eddy covariance method in applications beyond micrometeorology.Some of the topics covered in “Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications†include:Overview of eddy covariance principlesPlanning and design of an eddy covariance experiment Implementation of an eddy covariance experiment Processing eddy covariance dataAlternative flux methodsUseful resources, training and knowledge baseExample of planning, design and implementation of a complete eddy covariance station




Eddy Covariance Method For Scientific, Regulatory, and Commercial Applications


Book Description

Eddy covariance method is a modern high-precision technique for direct measurements of the movement of gases, water vapor, heat, and momentum between the surface and the atmosphere. It is used for measurements of carbon sequestration and emission rates in natural, agricultural, industrial, and urban environments, atmospheric exchange rates of greenhouse gases, direct mea­surements of evapotranspirative water loss, heat exchange, turbulence rates, and momentum fluxes. The wide range of applications includes numerous fundamental and applied sciences, regulatory and industrial monitoring, multiple aspects of agricultural management, as well as carbon trading and offsets, corporate sustainability and neutrality, among many others. The book “Eddy Covariance Method for Scientific, Regulatory, and Commercial Applications” has been created to familiarize the reader with the general theoretical principles, requirements, applica­tions, planning, processing, and analysis steps of the eddy covariance method. It is intended to assist readers in furthering their understanding of the method and provide refer­ences such as academic textbooks, flux network guidelines, and journal papers. In particular, it is designed to help scientific, industrial, agricultural, and regulatory projects and monitoring programs with experiment design and field deployment of the eddy covariance method. Some of the topics covered in “Eddy Covariance Method for Scientific, Regulatory, and Commercial Applications” include: · Overview of eddy covariance principles · Planning and design of an eddy covariance experiment · Implementation of an eddy covariance experiment · Processing and analysis of eddy covariance data · Networking multiple flux stations · Alternative flux methods · Useful resources, training and knowledge base · Example of planning, design and implementation of a comprehensive automated flux station




Conceptual Boundary Layer Meteorology


Book Description

Conceptual Boundary Layer Meteorology: The Air Near Here explains essential boundary layer concepts in a way that is accessible to a wide number of people studying and working in the environmental sciences. It begins with chapters designed to present the language of the boundary layer and the key concepts of mass, momentum exchanges, and the role of turbulence. The book then moves to focusing on specific environments, uses, and problems facing science with respect to the boundary layer. - Uses authentic examples to give readers the ability to utilize real world data - Covers boundary layer meteorology without requiring knowledge of advanced mathematics - Provides a set of tools that can be used by the reader to better understand land-air interactions - Provides specific applications for a wide spectrum of environmental systems




Footprints in Micrometeorology and Ecology


Book Description

How to interpret meteorological measurements made at a given level over a surface with regard to characteristic properties such as roughness, albedo, heat, moisture, carbon dioxide, and other gases is an old question which goes back to the very beginnings of modern micrometeorology. It is made even more challenging when it is unclear whether these measurements are only valid for this point/region and precisely describe the conditions there, or if they are also influenced by surrounding areas. After 50 years of field experiments, it has become both apparent and problematic that meteorological measurements are influenced from surfaces on the windward side. As such, extending these measurements for inhomogeneous experimental sites requires a quantitative understanding of these influences. When combined with atmospheric transport models similar to air pollution models, the ‘footprint’ concept – a fundamental approach introduced roughly 20 years ago – provides us with information on whether or not the condition of upwind site homogeneity is fulfilled. Since these first models, the development of more scientifically based versions, validation experiments and applications has advanced rapidly. The aim of this book is to provide an overview of these developments, to analyze present deficits, to describe applications and to advance this topic at the forefront of micrometeorological research.




Advances in Spectroscopic Monitoring of the Atmosphere


Book Description

Advances in Spectroscopic Monitoring of the Atmosphere provides a comprehensive overview of cutting-edge technologies and monitoring applications. Concepts are illustrated by numerous examples with information on spectroscopic techniques and applications widely distributed throughout the text. This information is important for researchers to gain an overview of recent developments in the field and make informed selections among the most suitable techniques. This volume also provides information that will allow researchers to explore implementing and developing new diagnostic tools or new approaches for trace gas and aerosol sensing themselves. Advances in Spectroscopic Monitoring of the Atmosphere covers advanced and newly emerging spectroscopic techniques for optical metrology of gases and particles in the atmosphere. This book will be a valuable reference for atmospheric scientists, including those whose focus is applying the methods to atmospheric studies, and those who develop instrumentation. It will also serve as a useful introduction to researchers entering the field and provide relevant examples to researchers and students developing and applying optical sensors for a variety of other scientific, technical, and industrial uses. - Overview of new applications including remote sensing by UAV, laser heterodyne radiometry, dual comb spectroscopy, and more - Features in-situ observations and measurements for real-world data - Includes content on leading edge optical sensors