Handbook of Research on Artificial Intelligence Techniques and Algorithms


Book Description

For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.




Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques


Book Description

"This book investiges machine learning (ML), one of the most fruitful fields of current research, both in the proposal of new techniques and theoretic algorithms and in their application to real-life problems"--Provided by publisher.




Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries


Book Description

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.




Research Handbook on the Law of Artificial Intelligence


Book Description

The field of artificial intelligence (AI) has made tremendous advances in the last two decades, but as smart as AI is now, it is getting smarter and becoming more autonomous. This raises a host of challenges to current legal doctrine, including whether AI/algorithms should count as ‘speech’, whether AI should be regulated under antitrust and criminal law statutes, and whether AI should be considered as an agent under agency law or be held responsible for injuries under tort law. This book contains chapters from US and international law scholars on the role of law in an age of increasingly smart AI, addressing these and other issues that are critical to the evolution of the field.




Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry


Book Description

The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.







The Handbook of Artificial Intelligence


Book Description

The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine and education, including ICAI systems design, intelligent CAI systems, medical systems, and other applications of AI to education. The manuscript explores automatic programming, as well as the methods of program specification, basic approaches, and automatic programming systems. The book is a valuable source of data for computer science experts and researchers interested in conducting further research in artificial intelligence.




Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques


Book Description

Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.




Handbook of Research on Fireworks Algorithms and Swarm Intelligence


Book Description

""This book provides vital research on theory analysis, improvements, and applications of fireworks algorithm. While highlighting topics such as convergence rate, parameter applications, and global optimization analysis, this publication explores up-to-date progress on the specific techniques of this algorithm"--Provided by publisher"--




The Cambridge Handbook of Artificial Intelligence


Book Description

An authoritative, up-to-date survey of the state of the art in artificial intelligence, written for non-specialists.