Handbook of Software Solutions for ICME


Book Description

As one of the results of an ambitious project, this handbook provides a well-structured directory of globally available software tools in the area of Integrated Computational Materials Engineering (ICME). The compilation covers models, software tools, and numerical methods allowing describing electronic, atomistic, and mesoscopic phenomena, which in their combination determine the microstructure and the properties of materials. It reaches out to simulations of component manufacture comprising primary shaping, forming, joining, coating, heat treatment, and machining processes. Models and tools addressing the in-service behavior like fatigue, corrosion, and eventually recycling complete the compilation. An introductory overview is provided for each of these different modelling areas highlighting the relevant phenomena and also discussing the current state for the different simulation approaches. A must-have for researchers, application engineers, and simulation software providers seeking a holistic overview about the current state of the art in a huge variety of modelling topics. This handbook equally serves as a reference manual for academic and commercial software developers and providers, for industrial users of simulation software, and for decision makers seeking to optimize their production by simulations. In view of its sound introductions into the different fields of materials physics, materials chemistry, materials engineering and materials processing it also serves as a tutorial for students in the emerging discipline of ICME, which requires a broad view on things and at least a basic education in adjacent fields.




Computational Design of Engineering Materials


Book Description

Presenting the fundamentals, key multiscale methods, and case studies for computational design of engineering materials.




Quality Analysis of Additively Manufactured Metals


Book Description

Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals Includes simulation results, experimental data and case studies




Internet of Production


Book Description

This seminal compendium, available through open access, illuminates the forefront of digital collaboration in production. It introduces the visionary concept of the Internet of Production (IoP), an ambitious initiative by Germany's esteemed Cluster of Excellence at RWTH Aachen University. This handbook pioneers the integration of data, models, and knowledge across development, production, and user cycles, offering interdisciplinary insights into production technology's horizons with the overall objective to create a worldwide lab. The work is organized into seven key parts, each contributing to a comprehensive understanding of the IoP. Part I lays the foundation with interdisciplinary visions and concepts. Part II delves into IoP's infrastructure, encompassing digital shadows and actionable artificial intelligence. Part III examines materials within the digitalized production landscape. Part IV confronts the challenges and potentials of production processes under novel digitalization methods. Part V focuses on production management with data-driven decision support, while Part VI explores agile development processes. Finally, Part VII delves into the interplay between internal and external perspectives in the IoP, human-centered work design, and platform-based ecosystems. Supported by the German Research Foundation (DFG), this compendium redefines manufacturing through the transformative IoP lens. Embrace this scholarly endeavor to embrace technological advancement. This is an open access book.




Advances in Design, Simulation and Manufacturing IV


Book Description

This book reports on topics at the interface between mechanical and chemical engineering, emphasizing design, simulation, and manufacturing. Specifically, it covers recent developments in the mechanics of solids and structures, numerical simulation of coupled problems, including fatigue, fluid behavior, particle movement, pressure distribution. Further, it reports on developments in chemical process technology, heat and mass transfer, energy-efficient technologies, and industrial ecology. Based on the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2021), held on June 8-11, 2021, in Lviv, Ukraine, this second volume of a 2-volume set provides academics and professionals with extensive information on trends, technologies, challenges and practice-oriented experience in the above-mentioned areas.




Structure and Properties of Additive Manufactured Polymer Components


Book Description

Structure and Properties of Additive Manufactured Polymer Components provides a state-of-the-art review from leading experts in the field who discuss key developments that have appeared over the last decade or so regarding the use of additive manufacturing (AM) methods in the production of neat and reinforced polymeric components. A major focus is given to materials science aspects, i.e., how the quality of the polymer preforms, the parameters of the chosen AM method, and how these factors can affect the microstructure and properties of the final product. The book not only covers production technologies and the relationship between processing, microstructure and fundamental properties of the produced parts, but also gives readers ideas on the use of AM polymer parts in medicine, automotive, aerospace, tribology, electronics, and more. Focuses on industrial aspects and applications Dedicated purely to recent advances in polymer composite additive manufacturing Emphasizes processing, structure and property relationships




Advances in Applied Mechanics


Book Description

Advances in Applied Mechanics, Volume 55 in this ongoing series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as Towards stochastic multi-scale methods in continuum solid mechanics, Fracture in soft elastic materials: Continuum description, molecular aspects and applications, Bio-Chemo-Mechanical Coupling Models of Soft Biological Materials: A Review, Viscoelasticity and cell swirling motion, Model selection and sensitivity analysis in the biomechanics of soft tissues: A case study on the human knee meniscus, Oncology and mechanics: Landmark studies and promising clinical. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Applied Mechanics series Edited by some of the best scientists in the field




Electronic Enclosures, Housings and Packages


Book Description

Electronic Enclosures, Housings and Packages considers the problem of heat management for electronics from an encasement perspective. It addresses enclosures and their applications for industrial electronics, as well as LED lighting solutions for stationary and mobile markets. The book introduces fundamental concepts and defines dimensions of success in electrical enclosures. Other chapters discuss environmental considerations, shielding, standardization, materials selection, thermal management, product design principles, manufacturing techniques and sustainability. Final chapters focus on business fundamentals by outlining successful technical propositions and potential future directions. Introduces the concepts of materials recycling and sustainability to electronic enclosures Provides thorough coverage of all technical aspects relating to the design and manufacturing of electronic packaging Includes practical information on environmental considerations, shielding, standardization, materials selection, and more







Integrated Computational Materials Engineering (ICME) for Metals


Book Description

Focuses entirely on demystifying the field and subject of ICME and provides step-by-step guidance on its industrial application via case studies This highly-anticipated follow-up to Mark F. Horstemeyer’s pedagogical book on Integrated Computational Materials Engineering (ICME) concepts includes engineering practice case studies related to the analysis, design, and use of structural metal alloys. A welcome supplement to the first book—which includes the theory and methods required for teaching the subject in the classroom—Integrated Computational Materials Engineering (ICME) For Metals: Concepts and Case Studies focuses on engineering applications that have occurred in industries demonstrating the ICME methodologies, and aims to catalyze industrial diffusion of ICME technologies throughout the world. The recent confluence of smaller desktop computers with enhanced computing power coupled with the emergence of physically-based material models has created the clear trend for modeling and simulation in product design, which helped create a need to integrate more knowledge into materials processing and product performance. Integrated Computational Materials Engineering (ICME) For Metals: Case Studies educates those seeking that knowledge with chapters covering: Body Centered Cubic Materials; Designing An Interatomic Potential For Fe-C Alloys; Phase-Field Crystal Modeling; Simulating Dislocation Plasticity in BCC Metals by Integrating Fundamental Concepts with Macroscale Models; Steel Powder Metal Modeling; Hexagonal Close Packed Materials; Multiscale Modeling of Pure Nickel; Predicting Constitutive Equations for Materials Design; and more. Presents case studies that connect modeling and simulation for different materials' processing methods for metal alloys Demonstrates several practical engineering problems to encourage industry to employ ICME ideas Introduces a new simulation-based design paradigm Provides web access to microstructure-sensitive models and experimental database Integrated Computational Materials Engineering (ICME) For Metals: Case Studies is a must-have book for researchers and industry professionals aiming to comprehend and employ ICME in the design and development of new materials.