Handbook On Optical Constants Of Metals, The: In Tables And Figures


Book Description

This book presents data on the optical constants of metal elements (Na, Au, Mg, Hg, Sc, Al, Ti, β-Sn, V, Cr, Mn, Fe, La, Th, etc.) semimetal elements (graphite, Sb, etc.), metallic compounds (TiN, VC, TiSi2, CoSi2, etc.) and high-temperature superconducting materials (YBa2Cu3O7-δ, MgB2, etc.). A complete set of the optical constants are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E) and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the metals, semimetals, metallic compounds and high-temperature superconducting materials in the course of their work.




The Handbook on Optical Constants of Metals


Book Description

Introduction -- Metal and semimetal elements -- Transition-metal carbides and nitrides -- Metallic silicides -- High-Tc superconductors.




The Handbook on Optical Constants of Metals


Book Description

This book presents data on the optical constants of metal elements (Na, Au, Mg, Hg, Sc, Al, Ti, -Sn, V, Cr, Mn, Fe, La, Th, etc.) semimetal elements (graphite, Sb, etc.), metallic compounds (TiN, VC, TiSi 2, CoSi 2, etc.) and high-temperature superconducting materials (YBa 2 Cu 3 O 7-, MgB 2, etc.). A complete set of the optical constants are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant A( E )=A 1 ( E )+iA 2 ( E ), the complex refractive index n *( E )= n ( E )+i k ( E ), the absorption coefficient ( E ) and the normal-incidence reflectivity R ( E ). The book will aid many who are interested to know the optical constants of the metals, semimetals, metallic compounds and high-temperature superconducting materials in the course of their work. Sample Chapter(s). Chapter 1: Introduction (1,081 KB). Chapter 2: Metals and Semimetal Elements (268 KB). Chapter 3: Transition Metal-Carbides and Nitrides (261 KB). Chapter 5: High-Tc Superconductors (129 KB). Contents: Introduction; Metal and Semimetal Elements; Transition-Metal Carbides and Nitrides; Metallic Silicides; High- T c Superconductors. Readership: Physicists, material scientists, engineers, undergraduate and postgraduate students who work in the field of Optics, especially high energy optics."




Handbook of Optical Constants of Solids


Book Description

This handbook--a sequel to the widely used Handbook of Optical Constants of Solids--contains critical reviews and tabulated values of indexes of refraction (n) and extinction coefficients (k) for almost 50 materials that were not covered in the original handbook. For each material, the best known n and k values have been carefully tabulated, from the x-ray to millimeter-wave region of the spectrum by expert optical scientists. In addition, the handbook features thirteen introductory chapters that discuss the determination of n and k by various techniques.* Contributors have decided the best values for n and k* References in each critique allow the reader to go back to the original data to examine and understand where the values have come from* Allows the reader to determine if any data in a spectral region needs to be filled in* Gives a wide and detailed view of experimental techniques for measuring the optical constants n and k* Incorporates and describes crystal structure, space-group symmetry, unit-cell dimensions, number of optic and acoustic modes, frequencies of optic modes, the irreducible representation, band gap, plasma frequency, and static dielectric constant




The Handbook on Optical Constants of Semiconductors


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




The Handbook on Optical Constants of Semiconductors


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant e(E)=e1(E)+ie2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient a(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




Handbook On Optical Constants Of Semiconductors, The: In Tables And Figures


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




Handbook of Optical Constants of Solids, Five-Volume Set


Book Description

This set of five volumes, four volumes edited by Edward D. Palik and a volume by Gorachand Ghosh, is a unique resource for any science and technology library. It provides materials researchers and optical device designers with reference facts in a context not available anywhere else. The singular functionality of the set derives from the unique format for the three core volumes that comprise the Handbook of Optical Constants of Solids. The Handbook satisfies several essential needs: first, it affords the most comprehensive database of the refractive index and extinction (or loss) coefficient of technically important and scientifically interesting dielectrics. This data has been critically selected and evaluated by authorities on each material. Second, the dielectric constant database is supplemented by tutorial chapters covering the basics of dielectric theory and reviews of experimental techniques for each wavelength region and material characteristic. As an additional resource, two of the tutorial chapters summarize the relevant characteristics of each of the materials in the database.The data in the core volumes have been collected and analyzed over a period of twelve years, with the most recent completed in 1997. The volumes systematically define the dielectric properties of 143 of the most engaging materials, including metals, semiconductors, and insulators. Together, the three Palik books contain nearly 3,000 pages, with about 2/3 devoted to the dielectric constant data. The tutorial chapters in the remaining 1/3 of the pages contain a wealth of information, including some dielectric data. Hence, the separate volume, Index to Handbook of Optical Constants of Solids, which is included as part of the set, substantially enhances the utility of the Handbook and in essence, joins all the Palik volumes into one unit. It isthen of great importance to users of the set. A final volume rounds out the set. The Handbook of Thermo-Optic Coefficients of Optical Materials with Applications collects refractive index measurements and their temperature dependence for a large number of crystals and glasses. Mathematical models represent these data, and in turn are used in the design of nonlinear optical devices.* Unique source of extremely useful optical data for a very broad community of scientists, researchers, and practitioners* Will be of great practical applicability to both industry and research* Presents optical constants for a broadest spectral range, for a very large number of materials: Paliks three volumes include 143 materials including 43 elements; Ghoshs volume includes some 70 technologically interesting crystals and many commercial glasses* Includes a special index volume that enables the user to search for the information in the three Palik volumes easily and quickly* Critique chapters in the Palik volumes discuss the data and give reference to most of the literature available for each material* Presents various techniques for measuring the optical constants and mathematical models for analytical calculations of some data




Earth-Abundant Materials for Solar Cells


Book Description

Systematically describes the physical and materials properties of copper-based quaternary chalcogenide semiconductor materials, enabling their potential for photovoltaic device applications. Intended for scientists and engineers, in particular, in the fields of multinary semiconductor physics and a variety of photovoltaic and optoelectronic devices.




Physical Properties and Data of Optical Materials


Book Description

Research and applications in optical engineering require careful selection of materials. With such a large and varied array to choose from, it is important to understand a material's physical and optical properties before making a selection. Providing a convenient, concise, and logically organized collection of information, Physical Properties and Data of Optical Materials builds a thorough background for more than 100 optical materials and offers quick access to precise information. Surveying the most important and widely used optical materials, this handy reference includes data on a wide variety of metals, semiconductors, dielectrics, polymers, and other commonly used optical materials. For each material, the editors examine the crystal system; natural and artificial growth and production methods along with corrosives and processing; thermal, electrical, and mechanical properties; optical properties, such as transmittance and reflectance spectra, ranging from UV to IR wavelengths; and, where applicable, applications for spectroscopy and miscellaneous remarks such as handling concerns and chemical properties. Numerous tables illustrate important data such as numerical values of optical constants for important wavelength regions, extinction and absorption coefficients, and refractive index. Physical Properties and Data of Optical Materials offers a collection of data on an unprecedented variety of fundamental optical materials, making it the one quick-lookup guide that every optical scientist, engineer, and student should own.