The Handbook on Optical Constants of Semiconductors


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




Handbook On Optical Constants Of Semiconductors, The: In Tables And Figures


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




The Handbook on Optical Constants of Semiconductors


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially important in the design and analysis of optical and photonic devices. This book presents data on the optical constants of various elemental and compound semiconductors. A complete set of the optical constants of the semiconductors are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant e(E)=e1(E)+ie2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient a(E), and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the elemental and compound semiconductors in the course of their work.




Handbook of Optical Constants of Solids


Book Description

This handbook--a sequel to the widely used Handbook of Optical Constants of Solids--contains critical reviews and tabulated values of indexes of refraction (n) and extinction coefficients (k) for almost 50 materials that were not covered in the original handbook. For each material, the best known n and k values have been carefully tabulated, from the x-ray to millimeter-wave region of the spectrum by expert optical scientists. In addition, the handbook features thirteen introductory chapters that discuss the determination of n and k by various techniques.* Contributors have decided the best values for n and k* References in each critique allow the reader to go back to the original data to examine and understand where the values have come from* Allows the reader to determine if any data in a spectral region needs to be filled in* Gives a wide and detailed view of experimental techniques for measuring the optical constants n and k* Incorporates and describes crystal structure, space-group symmetry, unit-cell dimensions, number of optic and acoustic modes, frequencies of optic modes, the irreducible representation, band gap, plasma frequency, and static dielectric constant




Optical Constants of Crystalline and Amorphous Semiconductors


Book Description

Knowledge of the refractive indices and absorption coefficients of semiconductors is especially import in the design and analysis of optical and optoelectronic devices. The determination of the optical constants of semiconductors at energies beyond the fundamental absorption edge is also known to be a powerful way of studying the electronic energy-band structures of the semiconductors. The purpose of this book is to give tabulated values and graphical information on the optical constants of the most popular semiconductors over the entire spectral range. This book presents data on the optical constants of crystalline and amorphous semiconductors. A complete set of the optical constants are presented in this book. They are: the complex dielectric constant (E=e.+ieJ, complex refractive index (n*=n+ik), absorption coefficient (a.), and normal-incidence reflectivity (R). The semiconductor materials considered in this book are the group-IV elemental and binary, llI-V, IT-VI, IV-VI binary semiconductors, and their alloys. The reader will fmd the companion book "Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles" useful since it emphasizes the basic material properties and fundamental prinCiples.




Handbook On Optical Constants Of Metals, The: In Tables And Figures


Book Description

This book presents data on the optical constants of metal elements (Na, Au, Mg, Hg, Sc, Al, Ti, β-Sn, V, Cr, Mn, Fe, La, Th, etc.) semimetal elements (graphite, Sb, etc.), metallic compounds (TiN, VC, TiSi2, CoSi2, etc.) and high-temperature superconducting materials (YBa2Cu3O7-δ, MgB2, etc.). A complete set of the optical constants are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant ε(E)=ε1(E)+iε2(E), the complex refractive index n*(E)=n(E)+ik(E), the absorption coefficient α(E) and the normal-incidence reflectivity R(E). The book will aid many who are interested to know the optical constants of the metals, semimetals, metallic compounds and high-temperature superconducting materials in the course of their work.




The Handbook on Optical Constants of Metals


Book Description

This book presents data on the optical constants of metal elements (Na, Au, Mg, Hg, Sc, Al, Ti, -Sn, V, Cr, Mn, Fe, La, Th, etc.) semimetal elements (graphite, Sb, etc.), metallic compounds (TiN, VC, TiSi 2, CoSi 2, etc.) and high-temperature superconducting materials (YBa 2 Cu 3 O 7-, MgB 2, etc.). A complete set of the optical constants are presented in tabular and graphical forms over the entire photon-energy range. They are: the complex dielectric constant A( E )=A 1 ( E )+iA 2 ( E ), the complex refractive index n *( E )= n ( E )+i k ( E ), the absorption coefficient ( E ) and the normal-incidence reflectivity R ( E ). The book will aid many who are interested to know the optical constants of the metals, semimetals, metallic compounds and high-temperature superconducting materials in the course of their work. Sample Chapter(s). Chapter 1: Introduction (1,081 KB). Chapter 2: Metals and Semimetal Elements (268 KB). Chapter 3: Transition Metal-Carbides and Nitrides (261 KB). Chapter 5: High-Tc Superconductors (129 KB). Contents: Introduction; Metal and Semimetal Elements; Transition-Metal Carbides and Nitrides; Metallic Silicides; High- T c Superconductors. Readership: Physicists, material scientists, engineers, undergraduate and postgraduate students who work in the field of Optics, especially high energy optics."




Handbook of Optical Constants of Solids, Five-Volume Set


Book Description

This set of five volumes, four volumes edited by Edward D. Palik and a volume by Gorachand Ghosh, is a unique resource for any science and technology library. It provides materials researchers and optical device designers with reference facts in a context not available anywhere else. The singular functionality of the set derives from the unique format for the three core volumes that comprise the Handbook of Optical Constants of Solids. The Handbook satisfies several essential needs: first, it affords the most comprehensive database of the refractive index and extinction (or loss) coefficient of technically important and scientifically interesting dielectrics. This data has been critically selected and evaluated by authorities on each material. Second, the dielectric constant database is supplemented by tutorial chapters covering the basics of dielectric theory and reviews of experimental techniques for each wavelength region and material characteristic. As an additional resource, two of the tutorial chapters summarize the relevant characteristics of each of the materials in the database.The data in the core volumes have been collected and analyzed over a period of twelve years, with the most recent completed in 1997. The volumes systematically define the dielectric properties of 143 of the most engaging materials, including metals, semiconductors, and insulators. Together, the three Palik books contain nearly 3,000 pages, with about 2/3 devoted to the dielectric constant data. The tutorial chapters in the remaining 1/3 of the pages contain a wealth of information, including some dielectric data. Hence, the separate volume, Index to Handbook of Optical Constants of Solids, which is included as part of the set, substantially enhances the utility of the Handbook and in essence, joins all the Palik volumes into one unit. It isthen of great importance to users of the set. A final volume rounds out the set. The Handbook of Thermo-Optic Coefficients of Optical Materials with Applications collects refractive index measurements and their temperature dependence for a large number of crystals and glasses. Mathematical models represent these data, and in turn are used in the design of nonlinear optical devices.* Unique source of extremely useful optical data for a very broad community of scientists, researchers, and practitioners* Will be of great practical applicability to both industry and research* Presents optical constants for a broadest spectral range, for a very large number of materials: Paliks three volumes include 143 materials including 43 elements; Ghoshs volume includes some 70 technologically interesting crystals and many commercial glasses* Includes a special index volume that enables the user to search for the information in the three Palik volumes easily and quickly* Critique chapters in the Palik volumes discuss the data and give reference to most of the literature available for each material* Presents various techniques for measuring the optical constants and mathematical models for analytical calculations of some data




Handbook of Optical Constants of Solids


Book Description

This is the third volume of the very successful set. This updated volume will contain non-linear properties of some of the most useful materials as well as chapters on optical measurement techniques. Contributors have decided the best values for n and k References in each critique allow the reader to go back to the original data to examine and understand where the values have come from Allows the reader to determine if any data in a spectral region needs to be filled in Gives a wide and detailed view of experimental techniques for measuring the optical constants n and k Incorporates and describes crystal structure, space-group symmetry, unit-cell dimensions, number of optic and acoustic modes, frequencies of optic modes, the irreducible representation, band gap, plasma frequency, and static dielectric constant




Fundamentals of Photonics


Book Description

Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.