Hands-On Data Science for Librarians


Book Description

Librarians understand the need to store, use and analyze data related to their collection, patrons and institution, and there has been consistent interest over the last 10 years to improve data management, analysis, and visualization skills within the profession. However, librarians find it difficult to move from out-of-the-box proprietary software applications to the skills necessary to perform the range of data science actions in code. This book will focus on teaching R through relevant examples and skills that librarians need in their day-to-day lives that includes visualizations but goes much further to include web scraping, working with maps, creating interactive reports, machine learning, and others. While there’s a place for theory, ethics, and statistical methods, librarians need a tool to help them acquire enough facility with R to utilize data science skills in their daily work, no matter what type of library they work at (academic, public or special). By walking through each skill and its application to library work before walking the reader through each line of code, this book will support librarians who want to apply data science in their daily work. Hands-On Data Science for Librarians is intended for librarians (and other information professionals) in any library type (public, academic or special) as well as graduate students in library and information science (LIS). Key Features: Only data science book available geared toward librarians that includes step-by-step code examples Examples include all library types (public, academic, special) Relevant datasets Accessible to non-technical professionals Focused on job skills and their applications




Data Science for Librarians


Book Description

This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries. Data Science for Librarians introduces data science to students and practitioners in library services. Writing for academic, public, and school library managers; library science students; and library and information science educators, authors Yunfei Du and Hammad Rauf Khan provide a thorough overview of conceptual and practical tools for data librarian practice. Partially due to how quickly data science evolves, libraries have yet to recognize core competencies and skills required to perform the job duties of a data librarian. As society transitions from the information age into the era of big data, librarians and information professionals require new knowledge and skills to stay current and take on new job roles, such as data librarianship. Such skills as data curation, research data management, statistical analysis, business analytics, visualization, smart city data, and learning analytics are relevant in library services today and will become increasingly so in the near future. This text serves as a tool for library and information science students and educators working on data science curriculum design.




A Hands-On Introduction to Data Science


Book Description

This book introduces the field of data science in a practical and accessible manner, using a hands-on approach that assumes no prior knowledge of the subject. The foundational ideas and techniques of data science are provided independently from technology, allowing students to easily develop a firm understanding of the subject without a strong technical background, as well as being presented with material that will have continual relevance even after tools and technologies change. Using popular data science tools such as Python and R, the book offers many examples of real-life applications, with practice ranging from small to big data. A suite of online material for both instructors and students provides a strong supplement to the book, including datasets, chapter slides, solutions, sample exams and curriculum suggestions. This entry-level textbook is ideally suited to readers from a range of disciplines wishing to build a practical, working knowledge of data science.




Data Science for Librarians


Book Description

More data, more problems -- A new strand of librarianship -- Data creation and collection -- Data for the academic librarian -- Research data services and the library ecosystem -- Data sources -- Data curation (archiving/preservation) -- Data storage, management, and retrieval -- Data analysis and visualization -- Data ethics and policies -- Data for public libraries and special libraries -- Conclusion: library, information, and data science.




Handbook of Research on Academic Libraries as Partners in Data Science Ecosystems


Book Description

Beyond providing space for data science activities, academic libraries are often overlooked in the data science landscape that is emerging at academic research institutions. Although some academic libraries are collaborating in specific ways in a small subset of institutions, there is much untapped potential for developing partnerships. As library and information science roles continue to evolve to be more data-centric and interdisciplinary, and as research using a variety of data types continues to proliferate, it is imperative to further explore the dynamics between libraries and the data science ecosystems in which they are a part. The Handbook of Research on Academic Libraries as Partners in Data Science Ecosystems provides a global perspective on current and future trends concerning the integration of data science in libraries. It provides both a foundational base of knowledge around data science and explores numerous ways academicians can reskill their staff, engage in the research enterprise, contribute to curriculum development, and help build a stronger ecosystem where libraries are part of data science. Covering topics such as data science initiatives, digital humanities, and student engagement, this book is an indispensable resource for librarians, information professionals, academic institutions, researchers, academic libraries, and academicians.




Practical Data Science for Information Professionals


Book Description

Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within.




The Digital Hand, Vol 3


Book Description

In The third volume of The Digital Hand, James W. Cortada completes his sweeping survey of the effect of computers on American industry, turning finally to the public sector, and examining how computers have fundamentally changed the nature of work in government and education. This book goes far beyond generalizations about the Information Age to the specifics of how industries have functioned, now function, and will function in the years to come. Cortada combines detailed analysis with narrative history to provide a broad overview of computings and telecommunications role in the entire public sector, including federal, state, and local governments, and in K-12 and higher education. Beginning in 1950, when commercial applications of digital technology began to appear, Cortada examines the unique ways different public sector industries adopted new technologies, showcasing the manner in which their innovative applications influenced other industries, as well as the U.S. economy as a whole.He builds on the surveys presented in the first volume of the series, which examined sixteen manufacturing, process, transportation, wholesale and retail industries, and the second volume, which examined over a dozen financial, telecommunications, media, and entertainment industries. With this third volume, The Digital Hand trilogy is complete, and forms the most comprehensive and rigorously researched history of computing in business since 1950, providing a detailed picture of what the infrastructure of the Information Age really looks like and how we got there. Managers, historians, economists, and those working in the public sector will appreciate Cortada's analysis of digital technology's many roles and future possibilities.




Science Libraries in the Self Service Age


Book Description

Science Libraries in the Self Service Age: Developing New Services, Targeting New Users suggests ways in which libraries can remain relevant to their institution. This book describes the myriad of new services and user communities which science librarians have recently incorporated into their routines. Where applicable, the book focuses on both researcher needs and the simple economics that emphasize the need for new service development. Science librarians will have to adapt to changing behaviors and needs if they want to remain a part of their organization's future. As this trend has hastened science librarians to develop new services, many of them aimed at audiences or user groups which had not typically used the library, this book provides timely tactics on which to build a cohesive plan. - Provides a list of practical, targeted services which science librarians can implement - Presents unified topics previously only dealt with separately (data management services, scholarly communication, digital preservation, etc.) - Considers economic and resource issues in developing new services - Written by an experienced librarian at a global institution




Encyclopedia of Data Science and Machine Learning


Book Description

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.