Two Reports on Harmonic Maps


Book Description

Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and K„hlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.




The Analysis of Harmonic Maps and Their Heat Flows


Book Description

This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral mesons, particle-antiparticle comparisons, post-Newtonian gravity, space-based missions, spectroscopy of hydrogen and antihydrogen, and spin-polarized matter.Theoretical topics covered include: physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; and associated issues in field theory, particle physics, gravity, and string theory. The contributors consist of the leading experts in this very active research field.







Harmonic Morphisms Between Riemannian Manifolds


Book Description

This is an account in book form of the theory of harmonic morphisms between Riemannian manifolds.







Lectures on Harmonic Maps


Book Description




Selected Topics in Harmonic Maps


Book Description




Geometric Mechanics on Riemannian Manifolds


Book Description

* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics




Partial Regularity for Harmonic Maps and Related Problems


Book Description

The book presents a collection of results pertaining to the partial regularity of solutions to various variational problems, all of which are connected to the Dirichlet energy of maps between Riemannian manifolds, and thus related to the harmonic map problem. The topics covered include harmonic maps and generalized harmonic maps; certain perturbed versions of the harmonic map equation; the harmonic map heat flow; and the Landau-Lifshitz (or Landau-Lifshitz-Gilbert) equation. Since the methods in regularity theory of harmonic maps are quite subtle, it is not immediately clear how they can be applied to certain problems that arise in applications. The book discusses in particular this question.




Harmonic Vector Fields


Book Description

An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods