Book Description
Georg Cantor, the founder of set theory, published his last paper on sets in 1897. In 1900, David Hilbert made Cantor's Continuum Problem and the challenge of well-ordering the real numbers the first problem in his famous Paris lecture. It was time for the appearance of the second generation of Cantorians. They emerged in the decade 1900-1909, and foremost among them were Ernst Zermelo and Felix Hausdorff. Zermelo isolated the Choice Principle, proved that every set could be well-ordered, and axiomatized the concept of set. He became the father of abstract set theory. Hausdorff eschewed foundations and pursued set theory as part of the mathematical arsenal. He was recognized as the era's leading Cantorian. From 1901-1909, Hausdorff published seven articles in which he created a representation theory for ordered sets and investigated sets of real sequences partially ordered by eventual dominance, together with their maximally ordered subsets. These papers are translated and appear in this volume. Each is accompanied by an introductory essay. These highly accessible works are of historical significance, not only for set theory, but also for model theory, analysis and algebra.