Big Data Analytics for Intelligent Healthcare Management


Book Description

Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more




Big Data Analytics in Healthcare


Book Description

This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.




Demystifying Big Data and Machine Learning for Healthcare


Book Description

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.




Big Data, Big Challenges: A Healthcare Perspective


Book Description

This is the first book to offer a comprehensive yet concise overview of the challenges and opportunities presented by the use of big data in healthcare. The respective chapters address a range of aspects: from health management to patient safety; from the human factor perspective to ethical and economic considerations, and many more. By providing a historical background on the use of big data, and critically analyzing current approaches together with issues and challenges related to their applications, the book not only sheds light on the problems entailed by big data, but also paves the way for possible solutions and future research directions. Accordingly, it offers an insightful reference guide for health information technology professionals, healthcare managers, healthcare practitioners, and patients alike, aiding them in their decision-making processes; and for students and researchers whose work involves data science-related research issues in healthcare.




Big Data and Health Analytics


Book Description

This book provides frameworks, use cases, and examples that illustrate the role of big data and analytics in modern health care, including how public health information can inform health delivery. Written for health care professionals and executives, this book presents the current thinking of academic and industry researchers and leaders from around the world. Using non-technical language, it includes case studies that illustrate the business processes that underlie the use of big data and health analytics to improve health care delivery.




Healthcare Data Analytics and Management


Book Description

Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges




Transforming Healthcare with Big Data and AI


Book Description

Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field. This book is the product of the Transforming Healthcare with Data conference, held at the University of Southern California. Many speakers and digital healthcare industry leaders contributed multidisciplinary expertise to chapters in this work. Authors’ backgrounds range from data scientists, healthcare experts, university professors, and digital healthcare entrepreneurs. If you have an understanding of data technologies and are interested in the future of Big Data and A.I. in healthcare, this book will provide a wealth of insights into the new landscape of healthcare.




Big Data Analytics in Bioinformatics and Healthcare


Book Description

As technology evolves and electronic data becomes more complex, digital medical record management and analysis becomes a challenge. In order to discover patterns and make relevant predictions based on large data sets, researchers and medical professionals must find new methods to analyze and extract relevant health information. Big Data Analytics in Bioinformatics and Healthcare merges the fields of biology, technology, and medicine in order to present a comprehensive study on the emerging information processing applications necessary in the field of electronic medical record management. Complete with interdisciplinary research resources, this publication is an essential reference source for researchers, practitioners, and students interested in the fields of biological computation, database management, and health information technology, with a special focus on the methodologies and tools to manage massive and complex electronic information.




Artificial Intelligence and Big Data Analytics for Smart Healthcare


Book Description

Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers




Research Anthology on Big Data Analytics, Architectures, and Applications


Book Description

Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.