Crude Oil Fouling


Book Description

With production from unconventional rigs continuing to escalate and refineries grappling with the challenges of shale and heavier oil feedstocks, petroleum engineers and refinery managers must ensure that equipment used with today's crude oil is protected from fouling deposits Crude Oil Fouling addresses this overarching challenge for the petroleum community with clear explanations on what causes fouling, current models and new approaches to evaluate and study the formation of deposits, and how today's models could be applied from lab experiment to onsite field usability for not just the refinery, but for the rig, platform, or pipeline. Crude Oil Fouling is a must-have reference for every petroleum engineer's library that gives the basic framework needed to analyze, model, and integrate the best fouling strategies and operations for crude oil systems. - Defines the most critical variables and events that cause fouling - Explains the consequences of fouling and its impact on operations, safety, and economics - Provides the technical models available to better predict and eliminate the potential for fouling in any crude system




Fouling in Refineries


Book Description

Fouling in Refineries is an important and ongoing problem that directly affects energy efficiency resulting in increased costs, production losses, and even unit shutdown, requiring costly expenditures to clean up equipment and return capacity to positive levels. This text addresses this common challenge for the hydrocarbon processing community within each unit of the refinery. As refineries today face a greater challenge of accepting harder to process heavier crudes and the ongoing flow of the lighter shale oil feedstocks, resulting in bigger challenges to balance product stability within their process equipment, this text seeks to inform all relative refinery personnel on how to monitor fouling, characterize the deposits, and follow all available treatments. With basic modeling and chemistry of fouling and each unit covered, users will learn how to operate at maximum production rates and elongate the efficiency of their refinery's capacity. - Presents an understanding of the breakdown of fouling per refinery unit, including distillation and coking units - Provides all the factors, crude types, and refining blends that cause fouling, especially the unconventional feedstocks and high acid crudes used today - Helps users develop an analysis-based treatment and control strategy that empowers them to operate refinery equipment at a level that prevents fouling from occurring










Fouling of Heat Exchangers


Book Description

This unique and comprehensive text considers all aspects of heat exchanger fouling from the basic science of how surfaces become fouled to very practical ways of mitigating the problem and from mathematical modelling of different fouling mechanisms to practical methods of heat exchanger cleaning. The problems that restrict the efficient operation of equipment are described and the costs, some of them hidden costs, that are associated with the fouling of heat exchangers are discussed. Some simple concepts and models of the fouling processes are presented as part of the introduction to the subject.Advice on the selection, design, installation and commissioning of heat exchangers to minimise fouling is given. A large part of the text is devoted to the use of chemical and other additives to reduce or eliminate the problem of fouling. Another large section is designed to give information on both on-line and off-line cleaning of heat exchangers. One of the difficulties faced by designers and operators of heat exchangers is anticipating the likely extent of fouling problems to be encountered with different flow streams. Another large section addresses the question and describes methods that have been used in attempting to define fouling potential. The book concludes with a chapter on how fouling information can be obtained using plant data, field tests and laboratory studies.




Quantifying Petroleum Fouling of Refinery Heat Exchangers


Book Description

Improvement to TEMA recommendations would provide engineers with greater confidence in the prediction of rates of fouling for various heat exchangers and heat exchanger types. This would allow heat exchangers to be designed to optimum specifications, resulting in enormous savings in capital and operating costs. In this work, optical and acoustic scattering techniques have been used in the development of two new oil stability tests. Interpretation of the scattered signals yields information about the state of aggregation of the asphaltene within the oil sample. Since the aggregation of asphaltene is known to play a key role in the fouling of refinery heat exchanger equipment, these new test provide information which is valuable, both in the design and in the operation of refinery heat exchangers. In addition, an investigation has been carried out in collaboration with a major international refiner into the use of artificial intelligence to model the fouling of process plant. Although the success of these models varied greatly, the better models were able to predict general trends in fouling rate.







Asphaltenes


Book Description

Asphaltenes have traditionally been viewed as being extremely complex, thus very hard to characterize. In addition, certain fundamental properties of asphaltenes have pre viously been inaccessible to study by traditional macroscopic methods, further limiting understanding of asphaltenes. These limitations inhibited development of descriptions regarding the microscopic structure and solution dynamics of asphaltenes. However, a variety ofmore recent studies have implied that asphaltenes share many chemical properties with the smaller, more tractable components of crude oils. Recent measurements have indicated that asphaltene molecular weights are not as !arge as previously thought, perhaps in the range of 600 to I 000 amu. In addition, new experimental methods applied to asphaltene chemical structures have been quite revealing, yielding a broad understanding. Conse quently, the ability to relate chemical structure with physical and chemical properties can be developed and extended to the understanding of important commercial properties of asphal tenes. This book treats significant new developments in the fundamentals and applications of asphaltenes. In the first section ofthe book, new experimental methods are described that characterize asphaltene structures from the molecular to colloidallength scale. The colloidal properties are understandable in terms of asphaltene chemical structures, especially with regard to the heteroatom impact on bonding. However, quantitative measurements of the of asphaltene self-association still need to be determined. In the second section of enthalpy this book, the fundamental understanding of asphaltenes is related riirectly to asphaltene utilization.