Heat Transfer and Fluid Flow in Minichannels and Microchannels


Book Description

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.




Nanoparticle Heat Transfer and Fluid Flow


Book Description

Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to mate




Laminar Flow Forced Convection in Ducts


Book Description

Laminar Flow Forced Convection in Ducts is a sourcebook for compact heat exchanger analytical data. This book describes the analytical solutions for laminar fluid flow and forced convection heat transfer in circular and noncircular pipes, including applicable differential equations and boundary conditions involving velocity and temperature problems of fluid flow. The book also discusses fluid flow—how much power is required to pump fluids through the heat exchanger, as well as the heat transfer—the determination of q" distribution, and the temperature of fluid and walls. The text also analyzes the coolant or heat transfer fluid flows in a nuclear power reactor composed of a bundle of circular section fuel rods located inside a round tube. R.A. Axford addresses fluid flow and heat transfers results for the rod bundle geometry in "Heat Transfer in Rod Bundles." The book also provides an overview and guidelines that can be used for the designer and the applied mathematician. This book is suitable for engineers working in electronics, aerospace, instrumentation, and biomechanics that use cooling or heating exchanges or solar collection systems.




The Kinematics of Mixing


Book Description

In spite of its universality, mixing is poorly understood and generally speaking, mixing problems are attacked on a case-by-case basis. This is the first book to present a unified treatment of the mixing of fluids from a kinematical viewpoint. The author's aim is to provide a conceptually clear basis from which to launch analysis and to facilitate an understanding of the numerous mixing problems encountered in nature and technology. After presenting the necessary background in kinematics and fluid dynamics, Professor Ottino considers various examples of dealing with necessary background in dynamical systems and chaos. The book assumes little previous knowledge of fluid dynamics and dynamical systems and can be used as a textbook by final-year undergraduates, graduate students and researchers in applied mathematics, engineering science, geophysics and physics who have an interest in fluid dynamics, continuum mechanics and dynamical systems. It is profusely illustrated in colour, with many line diagrams and half-tones. Systems which illustrate the most important concepts, many exercises and examples are included.




Compact Heat Exchangers


Book Description

Heat exchangers are a crucial part of aerospace, marine, cryogenic and refrigeration technology. These essays cover such topics as complicated flow arrangements, complex extended surfaces, two-phase flow and irreversibility in heat exchangers, and single-phase heat transfer.




Liquid Cooling of Electronic Devices by Single-Phase Convection


Book Description

Liquid Cooling of Electronic Devices by Single-Phase Convection offers the first comprehensive and in-depth coverage of liquid convection as it applies to state-of-the-art thermal management systems. In this book, Dr. Incropera culls ten years of research results, clarifies the physical mechanisms associated with single-phase convection in the context of electronic cooling, and provides working engineers with a solid foundation for the design and development of rational liquid cooling systems. For those involved in designing these products - mechanical and electrical engineers, electronic packaging engineers, technical staff, and others - this book provides an invaluable road map to meet the challenge.




Electronics Cooling


Book Description

Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.




VDI Heat Atlas


Book Description

For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.




Micro- and Nanoscale Fluid Mechanics


Book Description

This text focuses on the physics of fluid transport in micro- and nanofabricated liquid-phase systems, with consideration of gas bubbles, solid particles, and macromolecules. This text was designed with the goal of bringing together several areas that are often taught separately - namely, fluid mechanics, electrodynamics, and interfacial chemistry and electrochemistry - with a focused goal of preparing the modern microfluidics researcher to analyse and model continuum fluid mechanical systems encountered when working with micro- and nanofabricated devices. This text serves as a useful reference for practising researchers but is designed primarily for classroom instruction. Worked sample problems are included throughout to assist the student, and exercises at the end of each chapter help facilitate class learning.




Heat Transfer Enhancement Using Nanofluid Flow in Microchannels


Book Description

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels: Simulation of Heat and Mass Transfer focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels. Economic and environmental incentives have increased efforts to reduce energy consumption. Heat transfer enhancement, augmentation, or intensification are the terms that many scientists employ in their efforts in energy consumption reduction. These can be divided into (a) active techniques which require external forces such as magnetic force, and (b) passive techniques which do not require external forces, including geometry refinement and fluid additives. - Gives readers the knowledge they need to be able to simulate nanofluids in a wide range of microchannels and optimise their heat transfer characteristics - Contains real-life examples, mathematical procedures, numerical algorithms, and codes to allow readers to easily reproduce the methodologies covered, and to understand how they can be applied in practice - Presents novel applications for heat exchange systems, such as entropy generation minimization and figures of merit, allowing readers to optimize the techniques they use - Focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels