Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations


Book Description

A "Sonderforschungsbereich" (SFB) is a programme of the "Deutsche For schungsgemeinschaft" to financially support a concentrated research effort of a number of scientists located principally at one University, Research La boratory or a number of these situated in close proximity to one another so that active interaction among individual scientists is easily possible. Such SFB are devoted to a topic, in our case "Deformation and Failure in Metallic and Granular M aterialK' , and financing is based on a peer reviewed proposal for three (now four) years with the intention of several prolongations after evaluation of intermediate progress and continuation reports. An SFB is terminated in general by a formal workshop, in which the state of the art of the achieved results is presented in oral or I and poster communications to which also guests are invited with whom the individual project investigators may have collaborated. Moreover, a research report in book form is produced in which a number of articles from these lectures are selected and collected, which present those research results that withstood a rigorous reviewing pro cess (with generally two or three referees). The theme deformation and failure of materials is presented here in two volumes of the Lecture Notes in Applied and Computational Mechanics by Springer Verlag, and the present volume is devoted to granular and porous continua. The complementary volume (Lecture Notes in Applied and Com putational Mechanics, vol. 10, Eds. K. HUTTER & H.




Avalanche Dynamics


Book Description

Avalanches, mudflows and landslides are common and natural phenomena that occur in mountainous regions. With an emphasis on snow avalanches, this book provides a survey and discussion about the motion of avalanche-like flows from initiation to run out. An important aspect of this book is the formulation and investigation of a simple but appropriate continuum mechanical model for the realistic prediction of geophysical flows of granular material.




Simulations in Bulk Solids Handling


Book Description

Simulations in Bulk Solids Handling Valuable resource for engineers and professionals dealing with bulk granular or powdered materials across industries using Discrete Element Methods (DEM) In many traditional university engineering programmes, no matter whether undergraduate or postgraduate, the behavior of granular materials is not covered in depth or at all. This omission leaves recent engineering graduates with little formal education in the major industrial area of bulk solids handling. This book teaches young professionals and engineers to find appropriate solutions for handling granular and powdered materials. It also provides valuable information for experienced engineers to gain an understanding and appreciation of the most significant simulation methods–DEM chief amongst them. For any student or professional involved with bulk solids handling, this book is a key resource to understand the most efficient and effective stimulation methods that are available today. Its comprehensive overview of the topic allows for upcoming professionals to ensure they have adequate knowledge in the field and for experienced professionals to improve their skills and processes.




Granular Patterns


Book Description

This book presents a comprehensive review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.




Magnetic Micro and Nanorobot Swarms: From Fundamentals to Applications


Book Description

This book is focused on the attractive emerging field of micro-/nanorobot swarms (microswarms). It introduces fundamental understandings of various microswarms, including pattern generation, transformation, locomotion, and imaging. This book also demonstrates applications of micro-/nanorobot swarms in different fields, such as biomedical, environmental, and electrical applications. The detailed theoretical analysis and experimental demonstrations in this book provide readers ranging from students to researchers with a realistic picture of progress achieved in the field of micro-/nanorobot swarms. ​










Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics


Book Description

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.




Discrete-element Modeling of Granular Materials


Book Description

This book brings together in a single volume various methods and skills for particle-scale or discrete-element numerical simulation of granular media. It covers a broad range of topics from basic concepts and methods towards more advanced aspects and technical details applicable to the current research on granular materials. Discrete-element simulations of granular materials are based on four basic models (molecular dynamics, contact dynamics, quasi-static and event driven) dealing with frictional contact interactions and integration schemes for the equations of dynamics. These models are presented in the first chapters of the book, followed by various methods for sample preparation and monitoring of boundary conditions, as well as dimensionless control parameters. Granular materials encountered in real life involve a variety of compositions (particle shapes and size distributions) and interactions (cohesive, hydrodynamic, thermal) that have been extensively covered by several chapters. The book ends with two applications in the field of geo-materials.