Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics


Book Description

Currently, hemoglobin (Hb)-based oxygen carriers (HBOCs) are leading candidates as red blood cell substitutes. In addition, HBOCs are also potential oxygen therapeutics for treatment of patients with critical ischemic conditions due to atherosclerosis, diabetes and other conditions. This book will provide readers a comprehensive review of topics involved in the HBOC development. It focusses on current products and clinical applications as well as on emerging technologies and future prospects.




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Artificial Oxygen Carrier


Book Description

This volume of the Keio University International Symposia for Life Sciences and Medicine contains the proceedings of the 13th symposium held under the sponsorship of the Keio University Medical Science Fund. The fund was est- lished by the generous donation of the late Dr. Mitsunada Sakaguchi. The Keio University International Symposia for Life Sciences and Medicine constitute one of the core activities sponsored by the fund,of which the objective is to contribute to the international community by developing human resources, promoting scienti?c knowledge, and encouraging mutual exchange. Each year, the Committee of the International Symposia for Life Sciences and Medicine selects the most signi?cant symposium topics from applications received from the Keio medical community. The publication of the proce- ings is intended to publicize and distribute the information arising from the lively discussions of the most exciting and current issues presented during the symposium. On behalf of the Committee, I am most grateful to the late Dr. Sakaguchi, who made the series of symposia possible. We are also grateful to the prominent speakers for their contribution to this volume. In addition, we would like to acknowledge the ef?cient organizational work performed by the members of the program committee and the staff of the fund. Naoki Aikawa, M. D. , D. M. Sc. , F. A. C. S.




Chemistry and Biochemistry of Oxygen Therapeutics


Book Description

Human blood performs many important functions including defence against disease and transport of biomolecules, but perhaps the most important is to carry oxygen – the fundamental biochemical fuel - and other blood gases around the cardiovascular system. Traditional therapies for the impairment of this function, or the rapid replacement of lost blood, have centred around blood transfusions. However scientists are developing chemicals (oxygen therapeutics, or “blood substitutes”) which have the same oxygen-carrying capability as blood and can be used as replacements for blood transfusion or to treat diseases where oxygen transport is impaired. Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood links the underlying biochemical principles of the field with chemical and biotechnological innovations and pre-clinical development. The first part of the book deals with the chemistry, biochemistry, physiology and toxicity of oxygen, including chapters on hemoglobin reactivity and regulation; the major cellular and physiological control mechanisms of blood flow and oxygen delivery; hemoglobin and myoglobin; nitric oxide and oxygen; and the role of reactive oxygen and nitrogen species in ischemia/reperfusion Injury. The book then discusses medical needs for oxygen supply, including acute traumatic hemorrhage and anemia; diagnosis and treatment of haemorrhages in "non-surgical" patients; management of perioperative bleeding; oxygenation in the preterm neonate; ischemia normobaric and hyperbaric oxygen therapy for ischemic stroke and other neurological conditions; and transfusion therapy in β thalassemia and sickle cell disease Finally “old”and new strategies for oxygen supply are described. These include the political, administrative and logistic issues surrounding transfusion; conscientious objection in patient blood management; causes and consequences of red cell incompatibility; biochemistry of red blood cell storage; proteomic investigations on stored red blood cells; red blood cells from stem cells; the universal red blood cell; allosteric effectors of hemoglobin; hemoglobin-based oxygen carriers; oxygen delivery by natural and artificial oxygen carriers; cross-linked and polymerized hemoglobins as potential blood substitutes; design of novel pegylated hemoglobins as oxygen carrying plasma expanders; hb octamers by introduction of surface cysteines; hemoglobin-vesicles as a cellular type hemoglobin-based oxygen carrier; animal models and oxidative biomarkers to evaluate pre-clinical safety of extracellular hemoglobins; and academia – industry collaboration in blood substitute development. Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood is an essential reference for clinicians, haematologists, medicinal chemists, biochemists, molecular biologists, biotechnologists and blood substitute researchers.




Blood Substitutes


Book Description

Blood substitutes are solutions designed for use in patients who need blood transfusions, but for whom whole blood is not available, or is not safe. This interest has intensified in the wake of the AIDS and hepatitis C epidemics. Blood Substitutes describes the rationale, current approaches, clinical efficacy, and design issues for all blood substitutes now in clinical trials. The many summary diagrams and tables help make the book accessible to readers such as surgeons and blood bankers, who have less technical expertise than the biochemists and hematologists who are designing and testing blood substitutes.* Includes chapters necessary to the understanding of blood substitutes, including history, toxicity, physiology, and clinical applications* Presents detailed descriptions of the various products that have been developed and have advanced to clinical trials, and some that are in earlier states of development




Blood Substitutes, Present and Future Perspectives


Book Description

This book contains the selected papers presented at the seventh International Symposium on Blood Substitutes (7th ISBS) held at the International Conference Center of Waseda University in Tokyo on 7-10 September 1997. In keeping with the scientific design of the 7th ISBS Symposium, chapters have been carefully selected and organized to showcase the advancements in recent research. This book includes up-to-date clinical results of leading companies which are manufacturing hemoglobin-based or fluorocarbon-based blood substitutes, and covers issues of hemoglobin toxicity and side effects such as vasoconstriction in more detail using carefully designed in vivo and ex vivo techniques. This book is also a collection of various new types of red cell substitutes such as recombinant Hbs, recombinant albumine-lipidheme complex, modified red blood cells, and perfluorochemicals using material science and molecular engineering.







Essentials of Blood Product Management in Anesthesia Practice


Book Description

This comprehensive book is written to inform and improve outcomes of patients in need of blood management during surgical procedures. Information is presented in an accessible format, allowing for immediate use in clinical practice. Beginning with an overview of the history of blood transfusions, early chapters present the foundational information needed to comprehend information in later chapters. Nuanced procedures, drugs, and techniques are covered, including new biologicals to assist clotting and blood substitutes. Further discussions focus on potential complications seen in blood transfusions, such as diseases of the coagulation system, pathogen transmissions, and acute lung injuries. Chapters also examine the complexities of treating specific demographics, of which include the geriatric patient and patients suffering from substance abuse. Essentials of Blood Product Management in Anesthesia Practice is an invaluable guide for anesthesiologists, surgeons, trauma physicians, and solid organ transplant providers.




Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood


Book Description

Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood outlines the fundamental design concepts and emerging applications of nanotechnology in hematology, blood transfusion and artificial blood. This book is an important reference source for materials scientists, engineers and biomedical scientists who are looking to increase their understanding of how nanotechnology can lead to more efficient blood treatments. Sections focus on how nanotechnology could offer new routes to address challenging and pressing issues facing rare blood diseases and disorders and how nanomaterials can be used as artificial cell-like systems (compartmentalized biomimetic nanocontainers), which are especially useful in drug delivery. For artificial blood, the nanotechnological approach can fabricate artificial red blood cells, platelet substitutes, and white blood cell substitutes with their inherent enzyme and other supportive systems. In addition, nanomaterials can promote blood vessel growth and reserve red blood cells at a positive temperature. - Provides information on how nanotechnology can be used to create more efficient solutions for blood transfusions and hematology treatments - Explores the major nanomaterial types that are used for these treatments - Assesses the major challenges of using nanomaterials hematology




Blood Banking and Transfusion Medicine


Book Description

Ever since the discovery of blood types early in the last century, transfusion medicine has evolved at a breakneck pace. This second edition of Blood Banking and Transfusion Medicine is exactly what you need to keep up. It combines scientific foundations with today's most practical approaches to the specialty. From blood collection and storage to testing and transfusing blood components, and finally cellular engineering, you'll find coverage here that's second to none. New advances in molecular genetics and the scientific mechanisms underlying the field are also covered, with an emphasis on the clinical implications for treatment. Whether you're new to the field or an old pro, this book belongs in your reference library. Integrates scientific foundations with clinical relevance to more clearly explain the science and its application to clinical practice. Highlights advances in the use of blood products and new methods of disease treatment while providing the most up-to-date information on these fast-moving topics Discusses current clinical controversies, providing an arena for the discussion of sensitive topics. Covers the constantly changing approaches to stem cell transplantation and brings you the latest information on this controversial topic.