Probabilistic Single-Valued (Interval) Neutrosophic Hesitant Fuzzy Set and Its Application in Multi-Attribute Decision Making


Book Description

The uncertainty and concurrence of randomness are considered when many practical problems are dealt with. To describe the aleatory uncertainty and imprecision in a neutrosophic environment and prevent the obliteration of more data, the concept of the probabilistic single-valued (interval) neutrosophic hesitant fuzzy set is introduced. By definition, we know that the probabilistic single-valued neutrosophic hesitant fuzzy set (PSVNHFS) is a special case of the probabilistic interval neutrosophic hesitant fuzzy set (PINHFS). PSVNHFSs can satisfy all the properties of PINHFSs.




Techniques of Decision Making, Uncertain Reasoning and Regression Analysis Under the Hesitant Fuzzy Environment and Their Applications


Book Description

This book mainly introduces some techniques of decision-making, uncertain reasoning and regression analysis under the hesitant fuzzy environment and expands the applications of hesitant fuzzy sets in solving practical problems. The book pursues three major objectives: (1) to introduce some techniques about decision-making, uncertain reasoning and regression analysis under the hesitant fuzzy environment, (2) to prove these techniques theoretically and (3) to apply the involved techniques to practical problems. The book is especially valuable for readers to understand how hesitant fuzzy set could be employed in decision-making, uncertain reasoning and regression analysis and motivates researchers to expand more application fields of hesitant fuzzy set.




Hesitant Fuzzy Set


Book Description

Covering a wide range of notions concerning hesitant fuzzy set and its extensions, this book provides a comprehensive reference to the topic. In the case where different sources of vagueness appear simultaneously, the concept of fuzzy set is not able to properly model the uncertainty, imprecise and vague information. In order to overcome such a limitation, different types of fuzzy extension have been introduced so far. Among them, hesitant fuzzy set was first introduced in 2010, and the existing extensions of hesitant fuzzy set have been encountering an increasing interest and attracting more and more attentions up to now. It is not an exaggeration to say that the recent decade has seen the blossoming of a larger set of techniques and theoretical outcomes for hesitant fuzzy set together with its extensions as well as applications.As the research has moved beyond its infancy, and now it is entering a maturing phase with increased numbers and types of extensions, this book aims to give a comprehensive review of such researches. Presenting the review of many and important types of hesitant fuzzy extensions, and including references to a large number of related publications, this book will serve as a useful reference book for researchers in this field.




Fuzzy Systems and Data Mining V


Book Description

The Fuzzy Systems and Data Mining (FSDM) conference is an annual event encompassing four main themes: fuzzy theory, algorithms and systems, which includes topics like stability, foundations and control; fuzzy application, which covers different kinds of processing as well as hardware and architectures for big data and time series and has wide applicability; the interdisciplinary field of fuzzy logic and data mining, encompassing applications in electrical, industrial, chemical and engineering fields as well as management and environmental issues; and data mining, outlining new approaches to big data, massive data, scalable, parallel and distributed algorithms. The annual conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This book includes the papers accepted and presented at the 5th International Conference on Fuzzy Systems and Data Mining (FSDM 2019), held in Kitakyushu, Japan on 18-21 October 2019. This year, FSDM received 442 submissions. All papers were carefully reviewed by program committee members, taking account of the quality, novelty, soundness, breadth and depth of the research topics falling within the scope of FSDM. The committee finally decided to accept 137 papers, which represents an acceptance rate of about 30%. The papers presented here are arranged in two sections: Fuzzy Sets and Data Mining, and Communications and Networks. Providing an overview of the most recent scientific and technological advances in the fields of fuzzy systems and data mining, the book will be of interest to all those working in these fields.




Multiple Criteria Decision Making Methods with Multi-polar Fuzzy Information


Book Description

This book presents an extension of fuzzy set theory allowing for multi-polar information, discussing its impact on the theoretical and practical development of multi-criteria decision making. It reports on set of hybrid models developed by the authors, and show how they can be adapted, case by case, to the lack of certainty under a variety of criteria. Among them, hybrid models combining m-polar fuzzy sets with rough, soft and 2-tuple linguistic sets, and m-polar hesitant fuzzy sets and hesitant m-polar fuzzy are presented, together with some significant applications. In turn, outranking decision-making techniques such as m-polar fuzzy ELECTRE I, II, III and IV methods, as well as m-polar fuzzy PROMETHEE I and II methods, are developed. The efficiency of these decision-making procedures, as well as other possible extensions studied by the authors, is shown in some real-world applications. Overall, this book offers a guide on methodologies to deal with the multi-polarity and fuzziness of the real-world problems, simultaneously. By including algorithms and computer programming codes, it provides a practice-oriented reference guide to both researchers and professionals working at the interface between computational intelligence and decision making.




Pythagorean Fuzzy Sets


Book Description

This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.




Computational Intelligence


Book Description

Computational intelligence (CI) lies at the interface between engineering and computer science; control engineering, where problems are solved using computer-assisted methods. Thus, it can be regarded as an indispensable basis for all artificial intelligence (AI) activities. This book collects surveys of most recent theoretical approaches focusing on fuzzy systems, neurocomputing, and nature inspired algorithms. It also presents surveys of up-to-date research and application with special focus on fuzzy systems as well as on applications in life sciences and neuronal computing.




Fuzzy Mathematics


Book Description

This book is a printed edition of the Special Issue "Fuzzy Mathematics" that was published in Mathematics