High Accuracy Computing Methods


Book Description

""Presents methods necessary for high accuracy computing of fluid flow and wave phenomena in single source format using unified spectral theory of computing"--Provided by publisher"--







DNA Computing: Quantum Computing Methods


Book Description

"DNA Computing: Quantum Computing Methods" explores the convergence of quantum computing with DNA-based technologies, unveiling how quantum principles amplify the computational capabilities inherent in DNA. This comprehensive work navigates through the transformative potential across healthcare, finance, and beyond, addressing challenges, innovations, and ethical considerations. From advancements in hardware and algorithms to biotechnological integration, this book forecasts a future where quantum DNA computing drives unprecedented scientific and societal advancements."




Computational Methods and Experimental Measurements XVII


Book Description

Containing papers presented at the seventeenth in a series of biennial meetings organised by the Wessex Institute and first held in 1984, this book includes the latest research from scientists who perform experiments, researchers who develop computer codes, and those who carry out measurements on prototypes and whose work may interact. Progress in the engineering sciences is dependent on the orderly and concurrent development of all three fields. Continuous improvement in computer efficiency, coupled with diminishing costs and rapid development of numerical procedures have generated an ever-increasing expansion of computational simulations that permeate all fields of science and technology. As these procedures continue to grow in magnitude and complexity, it is essential to be certain of their reliability, i.e. to validate their results. This can be achieved by performing dedicated and accurate experiments. At the same time, current experimental techniques have become more complex and sophisticated so that they require the exploitation of computers, both for running experiments as well as acquiring and processing the resulting data. The papers contained in the book address advances in the interaction between these three areas. They cover such topics as: Computational and Experimental Methods; Fluid Flow; Structural and Stress Analysis; Materials Characterisation; Heat Transfer and Thermal Processes; Advances in Computational Methods; Automotive Applications; Applications in Industry; Process Simulations; Environmental Modelling and Applications; Computer Modelling; Validation of Computer Modelling; Computation in Measurements; Data Processing of Experiments; Virtual Testing and Verification; Simulation and Forecasting; Measurements in Engineering.




Stock Marketing: Quantum Computing Methods


Book Description

Explore the transformative potential of quantum computing in stock market analysis with 'Stock Marketing: Quantum Computing Methods'. This book provides a comprehensive overview of how quantum technologies are reshaping financial strategies, offering practical insights and future implications for investors and technologists alike.




Cardiovascular Computing—Methodologies and Clinical Applications


Book Description

This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.




Advances in Computational Methods and Technologies in Aeronautics and Industry


Book Description

This book provides research results using computational methods for fluid dynamics and engineering problems in aeronautics and other scientific and industrial applications. It gives an overview on the state of the art and the technology trends requiring advanced computational methods towards digitization in industrial and scientific processes. The chapters are based on Special Technology Sessions of the WCCM-ECCOMAS Virtual Congress 2021.




Computational Aerodynamics and Aeroacoustics


Book Description

Recent advances in scientific computing have caused the field of aerodynamics to change at a rapid pace, simplifying the design cycle of aerospace vehicles enormously – this book takes the readers from core concepts of aerodynamics to recent research, using studies and real-life scenarios to explain problems and their solutions. This book presents in detail the important concepts in computational aerodynamics and aeroacoustics taking readers from the fundamentals of fluid flow and aerodynamics to a more in-depth analysis of acoustic waves, aeroacoustics, computational modelling and processing. This book will be of use to students in multiple branches of engineering, physics and applied mathematics. Additionally, the book can also be used as a text in professional development courses for industry engineers and as a self-help reference for active researchers in both academia and the industry.




High-Performance Computing of Big Data for Turbulence and Combustion


Book Description

This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.




Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine


Book Description

Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.