Mechanical Properties and Working of Metals and Alloys


Book Description

This book is intended to serve as core text or handy reference on two key areas of metallic materials: (i) mechanical behavior and properties evaluated by mechanical testing; and (ii) different types of metal working or forming operations to produce useful shapes. The book consists of 16 chapters which are divided into two parts. The first part contains nine chapters which describe tension (including elastic stress – strain relation, relevant theory of plasticity, and strengthening methods), compression, hardness, bending, torsion – pure shear, impact loading, creep and stress rupture, fatigue, and fracture. The second part is composed of seven chapters and covers fundamentals of mechanical working, forging, rolling, extrusion, drawing of flat strip, round bar, and tube, deep drawing, and high-energy rate forming. The book comprises an exhaustive description of mechanical properties evaluated by testing of metals and metal working in sufficient depth and with reasonably wide coverage. The book is written in an easy-to-understand manner and includes many solved problems. More than 150 numerical problems and many multiple choice questions as exercise along with their answers have also been provided. The mathematical analyses are well elaborated without skipping any intermediate steps. Slab method of analysis or free-body equilibrium approach is used for the analytical treatment of mechanical working processes. For hot working processes, different frictional conditions (sliding, sticking and mixed sticking–sliding) have been considered to estimate the deformation loads. In addition to the slab method of analysis, this book also contains slip-line field theory, its application to the static system, and the steady state motion, Further, this book includes upper-bound theorem, and upper-bound solutions for indentation, compression, extrusion and strip drawing. The book can be used to teach graduate and undergraduate courses offered to students of mechanical, aerospace, production, manufacturing and metallurgical engineering disciplines. The book can also be used for metallurgists and practicing engineers in industry and development courses in the metallurgy and metallic manufacturing industries.




Explosive Welding, Forming and Compaction


Book Description

The last two decades have seen a steady and impressive development, and eventual industrial acceptance, of the high energy-rate manufact turing techniques based on the utilisation of energy available in an explo sive charge. Not only has it become economically viable to fabricate complex shapes and integrally bonded composites-which otherwise might not have been obtainable easily, if at all-but also a source of reasonably cheap energy and uniquely simple techniques, that often dispense with heavy equipment, have been made available to the engineer and applied scientist. The consolidation of theoretical knowledge and practical experience which we have witnessed in this area of activity in the last few years, combined with the growing industrial interest in the explosive forming, welding and compacting processes, makes it possible and also opportune to present, at this stage, an in-depth review of the state of the art. This book is a compendium of monographic contributions, each one of which represents a particular theoretical or industrial facet of the explosive operations. The contributions come from a number of practising engineers and scientists who seek to establish the present state of knowledge in the areas of the formation and propagation of shock and stress waves in metals, their metallurgical effects, and the methods of experimental assessment of these phenomena.







Explosive Forming of Metals


Book Description




Metal Cutting and Forming


Book Description

Metal cutting is the process of removing unwanted material in the form of chips from a block of metal using cutting tools. Metal cutting is performed on lathe machine, milling machine, drilling machine, shaper, planer and slotter. Grinding is the commonly used finishing process. Metal forming includes a large number of manufacturing processes in which plastic deformation property is used to change the shape and size of metal workpieces. During the process, for deformation purpose, a tool is used which is called as die. It applies stresses to the material to exceed the yield strength of the metal. Due to this the metal deforms into the shape of the die. Generally, the stresses applied to deform the metal plastically are compressive. Sheet metal working is generally associated with press machines and press working. Press working is a chipless manufacturing process by which various components are produced form sheet metal.




The Dynamics of Technology


Book Description

`This is a good book for a general reader to understand the inter-relationship between science, technology and society and particularly the contribution made by engineers towards technology development' - Technovation This volume, a collection of 10 essays by leading practitioners from both east and west, shows how technology, which has become a major force in our lives today, is itself like a powerful engine. The creation and maintenance of this engine depends on engineers, on ideas from science, research and development, on the pressures and constraints of the market place and national security, on the skills and knowledge of manpower and on the financial resources that banks, governments and other institutions can command and provide. This book does not expound any one point of view. Rather, it tries to understand how the engine of technology works, how it is a complex system whose working is shaped by political, economic, social and cultural forces and in turn shapes them.







Metal-matrix Composites


Book Description




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Catalog of Technical Reports


Book Description