High-Power GaAs-Based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency


Book Description

GaAs-based 9xx-nm broad-area diode lasers (BALs) offer the highest optical power (Popt) among diode lasers and the highest conversion efficiency (ηE) among all light sources. Therefore, they are widely used in material processing applications (e.g. metal cutting), which additionally require high beam quality (i.e. low beam parameter product BPP), typically limited in BALs along the lateral axis (BPPlat). Enhancing BAL performance is dependent on identifying the thermal and non-thermal limiting mechanisms, and implementing design changes to minimize their effects. In this work, two novel approaches based on lateral structuring are developed, aiming to overcome different limiting mechanisms acting along the lateral axis. First, the enhanced self-aligned lateral structure (eSAS) is based on integrating structured current-blocking layers outside the BAL stripe to centrally confine current and charge carriers, thereby suppressing lateral current spreading and lateral carrier accumulation. Two eSAS variants are optimized using simulation tools, then realized in multiple wafer processes, followed by characterization of mounted BALs. eSAS BALs exhibit state-of-the-art Popt and lateral brightness (Popt/BPPlat), with clear benefits over standard gain-guided BALs in terms of threshold, BPPlat and peak ηE. The second approach is chip-internal thermal path engineering, based on structured epitaxial layers replaced outside the stripe by heat-blocking materials to centrally confine heat flow. This flattens the lateral temperature profile (i.e. reduces thermal lensing) around the active zone, which is associated with enhanced brightness. Finite-element thermal simulations are used to estimate the benefits of this approach, thereby motivating its practical realization in future studies.




Epitaxial Design Optimizations for Increased Efficiency in GaAs-Based High Power Diode Lasers


Book Description

This work presents progress in the root-cause analysis of power saturation mechanisms in continuous wave (CW) driven GaAs-based high-power broad area diode lasers operated at 935 nm. Target is to increase efficiency at high optical CW powers by epitaxial design. The novel extreme triple asymmetric (ETAS) design was developed and patented within this work to equip diode lasers that use an extremely thin p-waveguide with a high modal gain. An iterative variation of diode lasers employing ETAS designs was used to experimentally clarify the impact of modal gain on the temperature dependence of internal differential quantum efficiency (IDQE) and optical loss. High modal gain leads to increased free carrier absorption from the active region. However, less power saturation is observed, which must then be attributed to an improved temperature sensitivity of the IDQE. The effect of longitudinal spatial hole burning (LSHB) leads to above average non-linear carrier loss at the back facet of the device. At high CW currents the junction temperature rises. Therefore, not only the asymmetry of the carrier profile increases but also the average carrier density in order to compensate for the decreased material gain and increased threshold gain. This carrier non-pinning effect above threshold is found in this work to enhance the impact of LSHB already at low currents, leading to rapid degradation of IDQE with temperature. This finding puts LSHB into a new context for CW-driven devices as it emphasizes the importance of low carrier densities at threshold. The carrier density was effectively reduced by applying the novel ETAS design. This enabled diode lasers to be realized that show minimized degradation of IDQE with temperature and therefore improved performance in CW operation.




High-Power Diode Lasers


Book Description

Starting from the basics of semiconductor lasers with emphasis on the generation of high optical output power the reader is introduced in a tutorial way to all key technologies required to fabricate high-power diode-laser sources. Various applications are exemplified.




High Power Diode Lasers


Book Description

This book summarizes a five year research project, as well as subsequent results regarding high power diode laser systems and their application in materials processing. The text explores the entire chain of technology, from the semiconductor technology, through cooling mounting and assembly, beam shaping and system technology, to applications in the processing of such materials as metals and polymers. Includes theoretical models, a range of important parameters and practical tips.




Packaging of High Power Semiconductor Lasers


Book Description

This book introduces high power semiconductor laser packaging design. The challenges of the design and various packaging and testing techniques are detailed by the authors. New technologies and current applications are described in detail.




Chemical Abstracts


Book Description




Physics Briefs


Book Description




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Ceramic Lasers


Book Description

Until recently, ceramic materials were considered unsuitable for optics due to the numerous scattering sources, such as grain boundaries and residual pores. However, in the 1990s the technology to generate a coherent beam from ceramic materials was developed, and a highly efficient laser oscillation was realized. In the future, the technology derived from the development of the ceramic laser could be used to develop new functional passive and active optics. Co-authored by one of the pioneers of this field, the book describes the fabrication technology and theoretical characterization of ceramic material properties. It describes novel types of solid lasers and other optics using ceramic materials to demonstrate the application of ceramic gain media in the generation of coherent beams and light amplification. This is an invaluable guide for physicists, materials scientists and engineers working on laser ceramics.




Semiconductor Disk Lasers


Book Description

This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.