Turbulent Flows and Heat Transfer


Book Description

Volume V of the High Speed Aerodynamics and Jet Propulsion series. Topics include transition from laminar to turbulent flow; turbulent flow; statistical theories of turbulence; conduction of heat; convective heat transfer and friction in flow of liquids; convective heat transfer in gases; cooling by protective fluid films; physical basis of thermal radiation; and engineering calculations of radiant heat exchange. Originally published in 1959. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




General Theory of High Speed Aerodynamics


Book Description

Volume VI of the High Speed Aerodynamics and Jet Propulsion series. This volume includes: physical and mathematical aspects of high speed flows; small perturbation theory; supersonic and transonic small perturbation theory; higher order approximations; nonlinear subsonic and transonic flow theory; nonlinear supersonic steady-flow theory; characteristic methods; flows with shock waves. Originally published in 1954. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Aerodynamics of Turbines and Compressors. (HSA-1), Volume 1


Book Description

Volume X of the High Speed Aerodynamics and Jet Propulsion series. Contents include: Theory of Two-Dimensional Flow through Cascades; Three-Dimensional Flow in Turbomachines; Experimental Techniques; Flow in Cascades; The Axial Compressor Stage; The Supersonic Compressor; Aerodynamic Design of Axial Flow Turbines; The Radial Turbine; The Centrifugal Compressor; Intermittent Flow Effects. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




NASA Technical Note


Book Description




Free Flight Hypersonic Heat Transfer and Boundary Layer Transition Studies


Book Description

Two HTV-1 Hypersonic Test Vehicles, Rounds A-40 and A-41, were flown at Holloman AFB in October 1959, with blunted and sharp 20 degree half angle nose cones, respectively. Round A-40 also incorporated nose cone incidence and a pitch disturber rocket. A maximum flight velociety of 5800 feet per second was attained, corresponding to a local shap cone Mach number and unit Reynolds number of 3.4 and 50 x 10(6) per foot respectively. Fligh dynamics data for the second stage of Round A-40 were obtained from analyses of the vector angle of attack history. The measured maximum trim angle of attack (1.5 degrees) agreed closely with the predicted trim based on an elastic structure and a nose cone incidence of 0.36 degrees. Surface temperatures and aerodynamic heating rates were obtained for one station and three radial positions on the conical portion of the blunted nose cone (Round A-40) and at 3 stations on each of the two longitudinal rays on the sharp cone (Round A-41). In addition, the temperature and heating rates were determined on the cylindrical portion of the Round A-41 payload and on the base of on Stage II fin for both vehicles. The maximum heating rate for the sharp cone was about 30 percent greater for the blunt cone as a result of higher local Mach numbers and Reynolds numbers on the sharp cone. Correlation of the blunted cone circumferential heating rates with the measured angle of attack showed that only a small increase in heating rate (less than about 5 percent increase from the zero angle of attack heating rate) occurs on the windward ray for turbulent heating conditions. The measured decrease in Stanton mumber with increasing Reynolds number (running length) for the sharp cone was found to be in close agreement with turbulent flow theory. Boundary layer transition reversal from turbulent to laminar flow was experienced on both the sharp and blunted tip cones. Transition reversal for the sharp cone, which had almost twice the local Mach number of the blunted cone, was found to occur at an enthalpy ratio, hw/hr, 30 percent greater than for the blunted cone. For both cones turbulent flow occurred within the Mach number and enthalpy region for complete stability of two dimensional disturbance as defined by Dunn and Lin. The possible effects of surface roughness in producing the observed transition reversal are discussed.




The Infrared Handbook


Book Description