Plastic Deformation in Nanocrystalline Materials


Book Description

It seems there is no special need to comment on the term 'nanostructure' now, when one often meets the 'nano' words not only in scientific journals but even in newspapers. Moreover, today they are even to be heard in TV and radio programmes. In academic science, where the terms 'nanostructure' and 'nan otechnology' have been extremely popular since the early 1990s, they have been successfully extended to the sphere of economics and business, and now to politics. This is quite natural because nanostructures and nanotechnolo gies will surely serve as a basis for the most advanced and highest technology production in the nearest and probably also the remote future. Hence, the struggle to create and occupy its markets is already under way. In this respect, it is of great interest to review data on the dynamics of U. S. Federal Goverment expenditure for nanotechnology [1,2]. In the fiscal years 1997 and 2002, expenditure was approximately US$116 and US$ 697 million, respectively. In the fiscal year 2004, the President's request for US federal in vestment in nanoscale science, engineering and technology is about US$ 849 million [2]. The indicative budget allocated to the Thematic Priority enti tled 'Nanotechnologies and nanosciences, knowledge-based multifunctional materials and new production processes and devices' for the duration 2002- 2006 of the sixth EU Framework Programme for Research and Technological Development is EUR 1300 million [3].







Fundamentals of Creep in Metals and Alloys


Book Description

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussionUnderstanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world's leading investigators.· Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion




Mechanical Properties of Nanocrystalline Materials


Book Description

This book concentrates on both understanding and development of nanocrystalline materials. The original relation that connects grain size and strength, known as the Hall-Petch relation, is studied in the nanometer grain size region. The breakdown of such a relation is a challenge. Why and how to overcome it? Is the dislocation mechanism still operating when the grain size is very small, approaching the amorphous limit? How do we go from the microstructure information to the continuum description of the mechanical properties?




Nanostructured Materials by High-Pressure Severe Plastic Deformation


Book Description

Recently, it was reported that nanostructured materials processed under high pressure by HPT and ECAP have an extraordinary combination of both high strength and high ductility, which are two desirable, but rarely co-existing properties. These findings indicate that high-pressure is a critical factor that can be employed to process nanostructured materials with superior mechanical, and possibly also physical, properties. It is the objective of this workshop to review our current knowledge, identify issues for future research, and discuss future directions on the processing and properties of nanostructured materials via SPD techniques, with a special emphasis on high-pressure effects. The 42 peer-reviewed papers in this book cover areas of high pressure effect on the nanostructure and properties of SPD-processed materials, fundamentals of nanostructured materials, development of high-pressure SPD technologies for commercializations, recent advances of SPD technologies as well as applications and future markets of SPD-processed nanostructured materials.




Nanostructured Metals and Alloys


Book Description

Tensile strength, fatigue strength and ductility are important properties of nanostructured metallic materials, which make them suitable for use in applications where strength or strength-to-weight ratios are important. Nanostructured metals and alloys reviews the latest technologies used for production of these materials, as well as recent advances in research into their structure and mechanical properties.One of the most important issues facing nanostructured metals and alloys is how to produce them. Part one describes the different methods used to process bulk nanostructured metals and alloys, including chapters on severe plastic deformation, mechanical alloying and electrodeposition among others. Part two concentrates on the microstructure and properties of nanostructured metals, with chapters studying deformation structures such as twins, microstructure of ferrous alloys by equal channel angular processing, and characteristic structures of nanostructured metals prepared by plastic deformation. In part three, the mechanical properties of nanostructured metals and alloys are discussed, with chapters on such topics as strengthening mechanisms, nanostructured metals based on molecular dynamics computer simulations, and surface deformation. Part four focuses on existing and developing applications of nanostructured metals and alloys, covering topics such as nanostructured steel for automotives, steel sheet and nanostructured coatings by spraying.With its distinguished editor and international team of contributors, Nanostructured metals and alloys is a standard reference for manufacturers of metal components, as well as those with an academic research interest in metals and materials with enhanced properties.




Nanostructured Materials


Book Description

This book narrows the field into the study of synthesis, characterization, and properties relevant to applications that require bulk, and mainly inorganic materials.




Nanocrystalline Materials


Book Description

Nanocrystalline materials with new functionalities show great promise for use in industrial applications - such as reinforcing fillers in novel polymer composites – and substantial progress has been made in the past decade in their synthesis and processing. However, there are several issues that need to be addressed to develop these materials further. Among these, exploration of novel methods for the large-scale synthesis of low cost self-assembled nanostructures is a challenging research topic. Accordingly, there has emerged a demand to study their synthesis-structure-property relationships in order to understand the fundamental concepts underlying the observed physical and mechanical properties.With contributions from leading experts, this book describes the fundamental theories and concepts that illustrate the complexity of the problem in developing novel nanocrystalline materials. It reviews the most up-to-date progress in the synthesis, microstructural characterization, physical and mechanical behavior, and application of nanomaterials.* Investigates the synthesis, characterisation and properties of a huge variety of nanocrystalline materials, and their applications in industry * Keeps the prominent challenges in nanomaterials fabrication at the forefront while offering the most up-to-date scientific findings




Superplasticity


Book Description

This book combines the perspectives of materials science of Superplasticity, on the one hand, and those of design and mechanics, on the other, in order to provide a holistic view of materials, design, mechanics and performance which will lead to useful solutions of societal benefits, in addition to providing great intellectual challenges. After considering the experimental evidence for superplasticity in different classes of materials, the book discusses the physics-based models, along with their advantages and limitations. Then, the analyses for superplastic forming available in the framework of continuum mechanics, finite element analysis and numerical simulations are presented. Finally, the authors highlight some successful industrial applications. This book is recommended as a text book for courses on Superplasticity and as supplementary use for courses on Materials Processing, Manufacturing, High Temperature Deformation, Nanotechnology and Mechanical Behavior of Materials. Persons working in Department of Materials Science and Engineering, Physics, Mechanics, Mechanical Engineering, Aerospace Engineering, Metallurgy, Ceramics and Geo-sciences are likely to find the book to be useful. It is also recommended as a reference source for practicing engineers involved in the design, processing and manufacture of industrial components, which exploit the unique properties associated with superplastic materials.