High-Temperature Superconducting Materials Science and Engineering


Book Description

This book explores the fascinating field of high-temperature superconductivity. Basic concepts–including experimental techniques and theoretical issues–are discussed in a clear, systematic manner. In addition, the most recent research results in the measurements, materials synthesis and processing, and characterization of physical properties of high-temperature superconductors are presented. Researchers and students alike can use this book as a comprehensive introduction not only to superconductivity but also to materials-related research in electromagnetic ceramics. Special features of the book: - presents recent developments in vortex-state properties, defects characterization, and phase equilibrium - introduces basic concepts for experimental techniques at low temperatures and high magnetic fields - provides a valuable reference for materials-related research - discusses potential industrial applications of high-temperature superconductivity - includes novel processing technologies for thin film and bulk materials - suggests areas of research and specific problems whose solution can make high-Tc superconductors a practical reality




High Temperature Superconducting Magnetic Levitation


Book Description

The authors begin this book with a systematic overview of superconductivity, superconducting materials, magnetic levitation, and superconducting magnetic levitation - the prerequisites to understand the latter part of the book - that forms a solid foundation for further study in High Temperature Superconducting Magnetic Levitation (HTS Maglev). This book presents our research progress on HTS Maglev at Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University (SWJTU), China, with an emphasis on the findings that led to the world‘s first manned HTS Maglev test vehicle "Century". The book provides a detailed description on our previous work at ASCLab including the designing of the HTS Maglev test and measurement method as well as the apparatus, building "Century", developing the HTS Maglev numerical simulation system, and making new progress on HTS Maglev. The final parts of this book discuss research and prototyping efforts at ASCLab in several adjacent fi elds including HTS Maglev bearing, Flywheel Energy Storage System (FESS) and HTS maglev launch technology. We hope this book becomes a valuable source for researchers and engineers working in the fascinating field of HTS Maglev science and engineering. Contents Fundamentals of superconductivity Superconducting materials Magnetic levitation Superconducting magnetic levitation HTS Maglev experimental methods and set-up First manned HTS Maglev vehicle in the world Numerical simulations of HTS Maglev New progress of HTS Maglev vehicle HTS Maglev bearing and flywheel energy storage system HTS Maglev launch technology




Handbook of High -Temperature Superconductivity


Book Description

Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.




High-Temperature Superconducting Devices for Energy Applications


Book Description

This book presents novel concepts in the development of high-temperature superconducting (HTS) devices and discusses the technologies involved in producing efficient and economically feasible energy technologies around the world. High-Temperature Superconducting Devices for Energy Application covers the application of high-temperature superconductors in clean energy production and allied cooling technologies. In addition, it presents the compatibility of other materials involved in the construction of various devices at cryogenic temperatures. It also summarizes superconducting fault current limiters (SFCL) and related grid stabilization. The book addresses the need to lower the losses incurred with efficient power transmission. The aim of this book is to serve the needs of industry professionals, researchers, and doctoral students studying energy technologies. Features Discusses the history of the development of high-temperature superconductors Covers cryogenic cooling technologies adapted for various superconducting devices Presents a detailed design of superconducting generators Highlights the importance of superconducting magnetic energy storage (SMES) devices in the power grid Focuses on theoretical computations




Applications of High Temperature Superconductors to Electric Power Equipment


Book Description

The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS. High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade. Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource. "HTS technology reduces electric losses and increases the efficiency of power equipment. This book by Swarn Kalsi, a leading expert on the HTS subject, provides a survey of the HTS technology and the design rules, performance analyses, and manufacturing concepts for power application-related devices. It compares conventional and HTS technology approaches for device design and provides significant examples of devices utilizing the HTS technology today. The book is useful for a broad spectrum of professionals worldwide: students, teaching staff, and OEM designers as well as users in industry and electric utilities." —Professor Dr. Rolf Hellinger, Research and Technologies Corporate Technology, Siemens AG







Superconductivity


Book Description

This book presents current research from across the globe in the study of superconductivity theory, materials and applications. Topics discussed include tunnelling spectroscopy of novel layered superconductors; stability conditions of high-Tc superconductors; a study of the superconducting phase in metallic superconductors; numerical calculation of trapped magnetic field for bulk superconductors; ion modified high-Tc Josephson junctions and SQUIDS; and vortices in high temperature superconductors.




Superconductors in the Power Grid


Book Description

Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. - Expert editor from highly respected US government-funded research centre - Unique focus on superconductors in the power grid - Comprehensive coverage




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




High Temperature Superconductors (HTS) for Energy Applications


Book Description

High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems. Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies. With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field.