High Temperature Superconductor Bulk Materials


Book Description

With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field.




High Temperature Superconductors (HTS) for Energy Applications


Book Description

High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems. Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies. With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field.




High-Temperature Superconducting Materials Science and Engineering


Book Description

This book explores the fascinating field of high-temperature superconductivity. Basic concepts–including experimental techniques and theoretical issues–are discussed in a clear, systematic manner. In addition, the most recent research results in the measurements, materials synthesis and processing, and characterization of physical properties of high-temperature superconductors are presented. Researchers and students alike can use this book as a comprehensive introduction not only to superconductivity but also to materials-related research in electromagnetic ceramics. Special features of the book: - presents recent developments in vortex-state properties, defects characterization, and phase equilibrium - introduces basic concepts for experimental techniques at low temperatures and high magnetic fields - provides a valuable reference for materials-related research - discusses potential industrial applications of high-temperature superconductivity - includes novel processing technologies for thin film and bulk materials - suggests areas of research and specific problems whose solution can make high-Tc superconductors a practical reality




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




Melt Processed High Temperature Superconductors


Book Description

The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high Jc oxide superconductors. Using magnetic forces between such high Jc oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, critical current, and applications of bulk monolithic superconductors. The text also describes the basic mechanism of levitation and its application. This book will be useful for research workers, engineers, and graduate students in the field of superconductivity.List of Authors: H Fujimoto, S Gotoh, T Izumi; N Koshizuka, K Miya, M Murakami, N Nakamura, Y Nakamura, Y Shiohara, H Takaichi, T Taguchi, M Uesaka, H W Weber, K Yamaguchi.




Physical Properties of High-Temperature Superconductors


Book Description

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets




Numerical Modelling Bulk Superconducto


Book Description

The purpose of the book is to provide a comprehensive overview of all the numerical modelling considerations required to model the magnetization of bulk superconductors, with practical examples.




Bismuth-Based High-Temperature Superconductors


Book Description

Provides coverage of the ongoing investigations on bismuth-based high-temperature cuprate superconductors, integrating scattered research activities and literature from 70 leading scientists throughout the world. The text covers crystal structures and microstructures, reversible or equilibrium magnetic and thermal properties, atomic site tunnel spectroscopy, experimental studies concerning equilibrium phases, and more.




High-Temperature Superconductors: Materials, Properties, and Applications


Book Description

The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.




Superconducting Levitation


Book Description

Presents the fundamental principles governing levitation of material bodies by magnetic fields without too much formal theory. Defines the technology of magnetic bearings, especially those based on superconductivity, and demonstrates the key roles that magnetics, mechanics and dynamics play in the complete understanding of magnetic levitation and its bearings. Features extensive figures and photos of Mag-Lev devices and summarizes recent U.S. research studies in an effort to regain the lead in Mag-Lev technologies.