Higher-Order Fourier Analysis and Applications


Book Description

Higher-order Fourier Analysis and Applications provides an introduction to the field of higher-order Fourier analysis with an emphasis on its applications to theoretical computer science. Higher-order Fourier analysis is an extension of the classical Fourier analysis. It has been developed by several mathematicians over the past few decades in order to study problems in an area of mathematics called additive combinatorics, which is primarily concerned with linear patterns such as arithmetic progressions in subsets of integers. The monograph is divided into three parts: Part I discusses linearity testing and its generalization to higher degree polynomials. Part II present the fundamental results of the theory of higher-order Fourier analysis. Part III uses the tools developed in Part II to prove some general results about property testing for algebraic properties. It describes applications of the theory of higher-order Fourier analysis in theoretical computer science, and, to this end, presents the foundations of this theory through such applications; in particular to the area of property testing.




Higher Order Fourier Analysis


Book Description

Higher order Fourier analysis is a subject that has become very active only recently. This book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature.




Higher Order Fourier Analysis


Book Description

Traditional Fourier analysis, which has been remarkably effective in many contexts, uses linear phase functions to study functions. Some questions, such as problems involving arithmetic progressions, naturally lead to the use of quadratic or higher order phases. Higher order Fourier analysis is a subject that has become very active only recently. Gowers, in groundbreaking work, developed many of the basic concepts of this theory in order to give a new, quantitative proof of Szemeredi's theorem on arithmetic progressions. However, there are also precursors to this theory in Weyl's classical theory of equidistribution, as well as in Furstenberg's structural theory of dynamical systems. This book, which is the first monograph in this area, aims to cover all of these topics in a unified manner, as well as to survey some of the most recent developments, such as the application of the theory to count linear patterns in primes. The book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature on the subject. There are numerous exercises with which to test one's knowledge.




Fourier Analysis on Finite Groups and Applications


Book Description

It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.




Real Analysis and Applications


Book Description

Real Analysis and Applications starts with a streamlined, but complete approach to real analysis. It finishes with a wide variety of applications in Fourier series and the calculus of variations, including minimal surfaces, physics, economics, Riemannian geometry, and general relativity. The basic theory includes all the standard topics: limits of sequences, topology, compactness, the Cantor set and fractals, calculus with the Riemann integral, a chapter on the Lebesgue theory, sequences of functions, infinite series, and the exponential and Gamma functions. The applications conclude with a computation of the relativistic precession of Mercury's orbit, which Einstein called "convincing proof of the correctness of the theory [of General Relativity]." The text not only provides clear, logical proofs, but also shows the student how to come up with them. The excellent exercises come with select solutions in the back. Here is a text which makes it possible to do the full theory and significant applications in one semester. Frank Morgan is the author of six books and over one hundred articles on mathematics. He is an inaugural recipient of the Mathematical Association of America's national Haimo award for excellence in teaching. With this applied version of his Real Analysis text, Morgan brings his famous direct style to the growing numbers of potential mathematics majors who want to see applications right along with the theory.




Lectures on the Fourier Transform and Its Applications


Book Description

This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.







Harmonic Analysis and Applications


Book Description

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.




Fourier Analysis


Book Description

Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.




Handbook of Fourier Analysis & Its Applications


Book Description

This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory.