Higher Segal Spaces


Book Description

This monograph initiates a theory of new categorical structures that generalize the simplicial Segal property to higher dimensions. The authors introduce the notion of a d-Segal space, which is a simplicial space satisfying locality conditions related to triangulations of d-dimensional cyclic polytopes. Focus here is on the 2-dimensional case. Many important constructions are shown to exhibit the 2-Segal property, including Waldhausen’s S-construction, Hecke-Waldhausen constructions, and configuration spaces of flags. The relevance of 2-Segal spaces in the study of Hall and Hecke algebras is discussed. Higher Segal Spaces marks the beginning of a program to systematically study d-Segal spaces in all dimensions d. The elementary formulation of 2-Segal spaces in the opening chapters is accessible to readers with a basic background in homotopy theory. A chapter on Bousfield localizations provides a transition to the general theory, formulated in terms of combinatorial model categories, that features in the main part of the book. Numerous examples throughout assist readers entering this exciting field to move toward active research; established researchers in the area will appreciate this work as a reference.




Higher Topos Theory


Book Description

In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.




Towards Higher Categories


Book Description

The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.




Infinity Properads and Infinity Wheeled Properads


Book Description

The topic of this book sits at the interface of the theory of higher categories (in the guise of (∞,1)-categories) and the theory of properads. Properads are devices more general than operads and enable one to encode bialgebraic, rather than just (co)algebraic, structures. The text extends both the Joyal-Lurie approach to higher categories and the Cisinski-Moerdijk-Weiss approach to higher operads, and provides a foundation for a broad study of the homotopy theory of properads. This work also serves as a complete guide to the generalised graphs which are pervasive in the study of operads and properads. A preliminary list of potential applications and extensions comprises the final chapter. Infinity Properads and Infinity Wheeled Properads is written for mathematicians in the fields of topology, algebra, category theory, and related areas. It is written roughly at the second year graduate level, and assumes a basic knowledge of category theory.




Simplicial and Dendroidal Homotopy Theory


Book Description

This open access book offers a self-contained introduction to the homotopy theory of simplicial and dendroidal sets and spaces. These are essential for the study of categories, operads, and algebraic structure up to coherent homotopy. The dendroidal theory combines the combinatorics of trees with the theory of Quillen model categories. Dendroidal sets are a natural generalization of simplicial sets from the point of view of operads. In this book, the simplicial approach to higher category theory is generalized to a dendroidal approach to higher operad theory. This dendroidal theory of higher operads is carefully developed in this book. The book also provides an original account of the more established simplicial approach to infinity-categories, which is developed in parallel to the dendroidal theory to emphasize the similarities and differences. Simplicial and Dendroidal Homotopy Theory is a complete introduction, carefully written with the beginning researcher in mind and ideally suited for seminars and courses. It can also be used as a standalone introduction to simplicial homotopy theory and to the theory of infinity-categories, or a standalone introduction to the theory of Quillen model categories and Bousfield localization.




Topology and Quantum Theory in Interaction


Book Description

This volume contains the proceedings of the NSF-CBMS Regional Conference on Topological and Geometric Methods in QFT, held from July 31–August 4, 2017, at Montana State University in Bozeman, Montana. In recent decades, there has been a movement to axiomatize quantum field theory into a mathematical structure. In a different direction, one can ask to test these axiom systems against physics. Can they be used to rederive known facts about quantum theories or, better yet, be the framework in which to solve open problems? Recently, Freed and Hopkins have provided a solution to a classification problem in condensed matter theory, which is ultimately based on the field theory axioms of Graeme Segal. Papers contained in this volume amplify various aspects of the Freed–Hopkins program, develop some category theory, which lies behind the cobordism hypothesis, the major structure theorem for topological field theories, and relate to Costello's approach to perturbative quantum field theory. Two papers on the latter use this framework to recover fundamental results about some physical theories: two-dimensional sigma-models and the bosonic string. Perhaps it is surprising that such sparse axiom systems encode enough structure to prove important results in physics. These successes can be taken as encouragement that the axiom systems are at least on the right track toward articulating what a quantum field theory is.




Mathematical Foundations of Quantum Field Theory and Perturbative String Theory


Book Description

Conceptual progress in fundamental theoretical physics is linked with the search for the suitable mathematical structures that model the physical systems. Quantum field theory (QFT) has proven to be a rich source of ideas for mathematics for a long time. However, fundamental questions such as ``What is a QFT?'' did not have satisfactory mathematical answers, especially on spaces with arbitrary topology, fundamental for the formulation of perturbative string theory. This book contains a collection of papers highlighting the mathematical foundations of QFT and its relevance to perturbative string theory as well as the deep techniques that have been emerging in the last few years. The papers are organized under three main chapters: Foundations for Quantum Field Theory, Quantization of Field Theories, and Two-Dimensional Quantum Field Theories. An introduction, written by the editors, provides an overview of the main underlying themes that bind together the papers in the volume.




Handbook of Homotopy Theory


Book Description

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.




Homotopy Theory of Higher Categories


Book Description

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.




Stacks and Categories in Geometry, Topology, and Algebra


Book Description

This volume contains the proceedings of the CATS4 Conference on Higher Categorical Structures and their Interactions with Algebraic Geometry, Algebraic Topology and Algebra, held from July 2-7, 2012, at CIRM in Luminy, France. Over the past several years, the CATS conference series has brought together top level researchers from around the world interested in relative and higher category theory and its applications to classical mathematical domains. Included in this volume is a collection of articles covering the applications of categories and stacks to geometry, topology and algebra. Techniques such as localization, model categories, simplicial objects, sheaves of categories, mapping stacks, dg structures, hereditary categories, and derived stacks, are applied to give new insight on cluster algebra, Lagrangians, trace theories, loop spaces, structured surfaces, stability, ind-coherent complexes and 1-affineness showing up in geometric Langlands, branching out to many related topics along the way.