The Master Algorithm


Book Description

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Deep Learning with Python


Book Description

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance




Frontier Applications of Nature Inspired Computation


Book Description

This book addresses the frontier advances in the theory and application of nature-inspired optimization techniques, including solving the quadratic assignment problem, prediction in nature-inspired dynamic optimization, the lion algorithm and its applications, optimizing the operation scheduling of microgrids, PID controllers for two-legged robots, optimizing crane operating times, planning electrical energy distribution systems, automatic design and evaluation of classification pipelines, and optimizing wind-energy power generation plants. The book also presents a variety of nature-inspired methods and illustrates methods of adapting these to said applications. Nature-inspired computation, developed by mimicking natural phenomena, makes a significant contribution toward the solution of non-convex optimization problems that normal mathematical optimizers fail to solve. As such, a wide range of nature-inspired computing approaches has been used in multidisciplinary engineering applications. Written by researchers and developers from a variety of fields, this book presents the latest findings, novel techniques and pioneering applications.




Optimization in Machine Learning and Applications


Book Description

This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.




Gradient Expectations


Book Description

An insightful investigation into the mechanisms underlying the predictive functions of neural networks—and their ability to chart a new path for AI. Prediction is a cognitive advantage like few others, inherently linked to our ability to survive and thrive. Our brains are awash in signals that embody prediction. Can we extend this capability more explicitly into synthetic neural networks to improve the function of AI and enhance its place in our world? Gradient Expectations is a bold effort by Keith L. Downing to map the origins and anatomy of natural and artificial neural networks to explore how, when designed as predictive modules, their components might serve as the basis for the simulated evolution of advanced neural network systems. Downing delves into the known neural architecture of the mammalian brain to illuminate the structure of predictive networks and determine more precisely how the ability to predict might have evolved from more primitive neural circuits. He then surveys past and present computational neural models that leverage predictive mechanisms with biological plausibility, identifying elements, such as gradients, that natural and artificial networks share. Behind well-founded predictions lie gradients, Downing finds, but of a different scope than those that belong to today’s deep learning. Digging into the connections between predictions and gradients, and their manifestation in the brain and neural networks, is one compelling example of how Downing enriches both our understanding of such relationships and their role in strengthening AI tools. Synthesizing critical research in neuroscience, cognitive science, and connectionism, Gradient Expectations offers unique depth and breadth of perspective on predictive neural-network models, including a grasp of predictive neural circuits that enables the integration of computational models of prediction with evolutionary algorithms.




Hands-On Genetic Algorithms with Python


Book Description

Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.




Digital Fluency


Book Description

If you are curious about the basics of artificial intelligence, blockchain technology, and quantum computing as key enablers for digital transformation and innovation, Digital Fluency is your handy guide. The real-world applications of these cutting-edge technologies are expanding rapidly, and your daily life will continue to be affected by each of them. There is no better time than now to get started and become digitally fluent. You need not have previous knowledge of these versatile technologies, as author Volker Lang will expertly guide you through this digital age. He illustrates key concepts and applications in numerous practical examples and more than 48 catchy figures throughout Digital Fluency. The end of each chapter presents you with a helpful implementation checklist of central lessons before proceeding to the next. This book gets to the heart of digital buzzwords and concepts, and tells you what they truly mean. Breaking down topics such as automated driving and intelligent robotics powered by artificial intelligence, blockchain-based cryptocurrencies and smart contracts, drug development and optimization of financial investment portfolios by quantum computing, and more is imperative to being ready for what the future of industry holds. Whether your own digital transformation journey takes place within your private or public organization, your studies, or your individual household, Digital Fluency maps out a concrete digital action plan for all of your technology and innovation strategy needs. What You Will Learn Gain guidance in the digital age without requiring any previous knowledge about digital technologies and digital transformation Get acquainted with the most popular current and prospective applications of artificial intelligence, blockchain technology, and quantum computing across a wide range of industries including healthcare, financial services, and the automobile industry Become familiar with the digital innovation models of Amazon, Google, Microsoft, IBM, and other world-leading organizations Implement your own digital transformation successfully along the eight core dimensions of a concrete digital action plan Who This Book Is For Thought-leaders, business executives and industry strategists, management and strategy consultants, politicians and policy makers, entrepreneurs, financial analysts, investors and venture capitalists, students and research scientists, as well as general readers, who want to become digitally fluent.




The Algebraic Mind


Book Description

In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.




Multi-Objective Optimization using Evolutionary Algorithms


Book Description

Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.