Hilbert And Banach Space-valued Stochastic Processes


Book Description

This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodým derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p ≥ 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.




Multidimensional Second Order Stochastic Processes (Second Edition)


Book Description

"Functional analysis methods are used on stochastic processes. Structural analysis of nonstationary and stationary processes are also included. This book is in the intersection of probability theory and analysis"--




Multidimensional Second Order Stochastic Processes


Book Description

This book provides a research-expository treatment of infinite-dimensional nonstationary stochastic processes or time series. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes and also the stationary class. Emphasis is on the use of functional, harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Readers may find that the covariance kernel analysis is emphasized and it reveals another aspect of stochastic processes. This book is intended not only for probabilists and statisticians, but also for communication engineers.




Probability in Banach Spaces


Book Description

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.




Stochastic Processes and Functional Analysis


Book Description

This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.




Stochastic Processes, Physics and Geometry: New Interplays. I


Book Description

This volume and "IStochastic Processes, Physics and Geometry: New Interplays II" present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.




Martingales in Banach Spaces


Book Description

This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.




Linear Processes in Function Spaces


Book Description

The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert and Banach spaces and general linear processes and statistical prediction. Implementation and numerical applications are also covered. The book assumes knowledge of classical probability theory and statistics.




Multidimensional Second Order Stochastic Processes


Book Description

A research-expository treatment of infinite-dimensional nonstationary stochastic processes (or time series) on a locally compact abelian group is provided with this book. Stochastic measures and scalar or operator bimeasures are fully discussed.




Stochastic Space—Time Models and Limit Theorems


Book Description

Approach your problems from It isn't that they can't see the right end and begin with the solution. the answers. Then one day, It is that they can't see the perhaps you will find the problem. final question. G.K. Chesterton. The Scandal 'The Hermit Clad 1n Crane of Father Brown 'The Point of Feathers' in R. van Gulik's a Pin'. The Chinese Maze Murders. Growing specialisation and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches wich were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD" , "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.