Hilbert-Type Integral Inequalities


Book Description

"Hilbert-type integral inequalities, including the well known Hilbert's integral inequality published in 1908, are important in analysis and its applications. This well organized handbook covers the newest methods of weight functions and most important rec"




On Hilbert-Type and Hardy-Type Integral Inequalities and Applications


Book Description

This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.




Hilbert-Type Inequalities: Operators, Compositions and Extensions


Book Description

Hilbert-type inequalities include Hilbert's inequalities, Hardy-Hilbert-type inequalities and Yang-Hilbert-type inequalities, which are important in Analysis and its applications.They are mainly divided three kinds of integral, discrete and half-discrete.In recent twenty years, there are many advances in research on Hilbert-type inequalities,especially in Yang-Hilbert-type inequalities. In this book, by using the way of weight functions, the parameterized idea and technique of Real and Functional Analysis, we introduce multi-parameters and provide three kinds of double Hilbert-type inequalities with the general measurable kernels and the best possible constant factors. The equivalent forms, the reverses and some particular inequalities are obtained. Furthermore, the operator expressions with the norm, a large number of examples on the norm, some composition formulas of the operators, and three kinds of compositional inequalities with the best possible constant factors are considered. The theory of double Hilbert-type inequalities and operators are almost built. The lemmas and theorems provide an extensive account of these kinds of inequalities and operators.




HILBERT-TYPE AND HARDY-TYPE INTEGRAL INEQUALITIES IN THE WHOLE PLANE


Book Description

Hilbert-type inequalities including Hilbert’s inequalities (built-in 1908), Hardy-Hilbert-type inequalities (built-in 1934), and Yang-Hilbert-type inequalities (built-in 1998) played an important role in analysis and their applications, which are mainly divided into three classes of integral, discrete and half-discrete. In recent twenty years, there are many advances in research on Hilbert-type inequalities, especially in Yang-Hilbert-type inequalities. In this book, applying the weight functions, the parameterized idea, and the techniques of real analysis and functional analysis, we provide three kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane as well as their reverses with parameters, which are extensions of Hilbert-type and Hardy-type integral inequalities in the first quarter. The equivalent forms, the operator expressions, and some equivalent statements of the best possible constant factors related to several parameters are considered. The lemmas and theorems provide an extensive account of these kinds of integral inequalities and operators. There are seven chapters in this book. In Chapter 1, we introduce some recent developments of Hilbert-type integral, discrete, and half-discrete inequalities. In Chapters 2-3, by using the weight function and real analysis, some new Hilbert-type and Hardy-type integral inequalities in the whole plane with the non-homogeneous kernel are given, and the cases of the homogeneous kernel are deduced. The equivalent forms and some equivalent statements of the best possible constant factors related to several parameters are obtained. We also consider the operator expressions as well as the reverses. In Chapters 4-7, the other two kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane are also considered. We hope that this monograph will prove to be useful especially to graduate students of mathematics, physics, and engineering sciences.




On Hilbert-Type and Hardy-Type Integral Inequalities and Applications


Book Description

This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.




Inequalities Involving Functions and Their Integrals and Derivatives


Book Description

This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.




Discrete Hilbert-Type Inequalities


Book Description

Discrete Hilbert-type inequalities including Hilbert's inequality are important in mathematical analysis and its applications. In 1998, the author presented an extension of Hilbert's integral inequality with an independent parameter. In 2004, some new extensions of Hilbert's inequality were presented by introducing two pairs of conjugate exponents and additional independent parameters. Since then, a number of new discrete Hilbert-type inequalities have arisen. In this book, the author explains how to use the way of weight coefficients and introduce specific parameters to build new discrete Hil.




On Extended Hardy-hilbert Integral Inequalities And Applications


Book Description

Hilbert-type inequalities, including Hilbert's inequalities proved in 1908, Hardy-Hilbert-type inequalities proved in 1934, and Yang-Hilbert-type inequalities first proved around 1998, play an important role in analysis and its applications. These inequalities are mainly divided in three classes: integral, discrete and half-discrete. During the last twenty years, there have been many research advances on Hilbert-type inequalities, and especially on Yang-Hilbert-type inequalities.In the present monograph, applying weight functions, the idea of parametrization as well as techniques of real analysis and functional analysis, we prove some new Hilbert-type integral inequalities as well as their reverses with parameters. These inequalities constitute extensions of the well-known Hardy-Hilbert integral inequality. The equivalent forms and some equivalent statements of the best possible constant factors associated with several parameters are considered. Furthermore, we also obtain the operator expressions with the norm and some particular inequalities involving the Riemann-zeta function and the Hurwitz-zeta function. In the form of applications, by means of the beta function and the gamma function, we use the extended Hardy-Hilbert integral inequalities to consider several Hilbert-type integral inequalities involving derivative functions and upper limit functions. In the last chapter, we consider the case of Hardy-type integral inequalities. The lemmas and theorems within provide an extensive account of these kinds of integral inequalities and operators.Efforts have been made for this monograph hopefully to be useful, especially to graduate students of mathematics, physics and engineering, as well as researchers in these domains.




Riemann–Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle


Book Description

The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers. The fundamental tools to obtain these results are provided by some new Riemann-Stieltjes integral inequalities of continuous integrands on the complex unit circle and integrators of bounded variation. Features All the results presented are completely proved and the original references where they have been firstly obtained are mentioned Intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, as well as by postgraduate students and scientists applying inequalities in their specific areas Provides new emphasis to mathematical inequalities, approximation theory and numerical analysis in a simple, friendly and well-digested manner. About the Author Silvestru Sever Dragomir is Professor and Chair of Mathematical Inequalities at the College of Engineering & Science, Victoria University, Melbourne, Australia. He is the author of many research papers and several books on Mathematical Inequalities and their Applications. He also chairs the international Research Group in Mathematical Inequalities and Applications (RGMIA). For details, see https://rgmia.org/index.php.




Differential and Integral Inequalities


Book Description

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.