Histidine Kinases in Signal Transduction


Book Description

Living cells are constantly sensing environmental changes, and their abilities to sense these changes and adapt to them are essential for their survival. In bacteria, histidine kinases are the major sensors for these environmental stresses, enabling cells to adapt to new growth conditions. Written by leading experts in the field, this book provides an up-to-date and comprehensive review on the structure and function of histidine kinases. It also provides extensive information on the physiological roles of histidine kinases in bacteria and eukaryotes. An an essential reference for cell biologists, microbiologists, molecular biologists, and biochemists interested in signal transduction. Experimental biologists and pharmacologists studying signal transduction systems in living organisms will also find it a valuable research tool. - The first comprehensive book on the roles of histidine kinases in cells - 23 in-depth chapters written by leading experts in the field - Describes the most recent advances in the field of signal transduction




Histidine Phosphorylation


Book Description

This volume details the current understanding of roles and regulation on histidine phosphorylation, describing methods for the characterization of protein phosphorylation on histidine. Chapters guide readers through in vitro systems, cell-based systems, comprehensive background review articles on histidine kinases and phosphatases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Histidine Phosphorylation: Methods and Protocols aims to ensure successful results in the further study of this rapidly growing field.




Protein Kinases and Stress Signaling in Plants


Book Description

A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




Annual Plant Reviews, The Plant Hormone Ethylene


Book Description

The plant hormone ethylene is one of the most important, being one of the first chemicals to be determined as a naturally-occurring growth regulator and influencer of plant development. It was also the first hormone for which significant evidence was found for the presence of receptors. This important new volume in Annual Plant Reviews is broadly divided into three parts. The first part covers the biosynthesis of ethylene and includes chapters on S-adenosylmethionine and the formation and fate of ACC in plant cells. The second part of the volume covers ethylene signaling, including the perception of ethylene by plant cells, CTR proteins, MAP kinases and EIN2 / EIN3. The final part covers the control by ethylene of cell function and development, including seed development, germination, plant growth, cell separation, fruit ripening, senescent processes, and plant-pathogen interactions. The Plant Hormone Ethylene is an extremely valuable addition to Wiley-Blackwell's Annual Plant Reviews. With contributions from many of the world's leading researchers in ethylene, and edited by Professor Michael McManus of Massey University, this volume will be of great use and interest to a wide range of plant scientists, biochemists and chemists. All universities and research establishments where plant sciences, biochemistry, chemistry, life sciences and agriculture are studied and taught should have access to this important volume.







Bacterial Signaling


Book Description

Providing a comprehensive insight into cellular signaling processes in bacteria with a special focus on biotechnological implications, this is the first book to cover intercellular as well as intracellular signaling and its relevance for biofilm formation, host pathogen interactions, symbiotic relationships, and photo- and chemotaxis. In addition, it deals in detail with principal bacterial signaling mechanisms -- making this a valuable resource for all advanced students in microbiology. Dr. Krämer is a world-renowned expert in intracellular signaling and its implications for biotechnology processes, while Dr. Jung is an expert on intercellular signaling and its relevance for biomedicine and agriculture.




Two-component Systems in Bacteria


Book Description

Current information on two-component systems in bacteria including structure-function analysis, sensing mechanisms, atypical two-component systems, stress responses, developmental processes, virulence and symbiosis.




Two-component Signal Transduction


Book Description

The human enteroviruses, particularly the polio viruses, have had a significant role in the history of medicine and microbiology; and continue to cause clinical problems, as well as provide targets for molecular investigation. This book offers a link between the basic science and clinical medicine.




Signal Transduction


Book Description

Signal Transduction is a text reference on cellular signalling processes. Starting with the basics, it explains how cells respond to external cues (hormones, cytokines, neurotransmitters, adhesion molecules, extracellular matrix etc), and shows how these inputs are integrated and co-ordinated. The first half of the book provides the conceptual framework, explaining the formation and action of second messengers, particularly cyclic nucleotides and calcium, and the mediation of signal pathways by GTP-binding proteins. The remaining chapters deal with the formation of complex signalling cascades employed by cytokines and adhesion molecules, starting at the membrane and ending in the nucleus, there to regulate gene transcription. In this context, growth is an important potential outcome and this has relevance to the cellular transformations that underlie cancer. The book ends with a description at the molecular level of how signalling proteins interact with their environment and with each other through their structural domains. Each main topic is introduced with a historical essay, detailing the sources, key observations and experiments that set the scene for recent and current work.