One Hundred Years of Chemical Engineering


Book Description

One hundred years ago, in September 1888, Professor Lewis Mills Norton (1855-1893) of the Chemistry Department of the Massachusetts Institute of Technology introduced to the curriculum a course on industrial chemical practice. This was the first structured course in chemical engineer ing taught in a University. Ten years later, Norton's successor Frank H. Thorpe published the first textbook in chemical engineering, entitled "Outlines of Industrial Chemistry." Over the years, chemical engineering developed from a simple industrial chemical analysis of processes into a mature field. The volume presented here includes most of the commissioned and contributed papers presented at the American Chemical Society Symposium celebrating the centenary of chemical engineering. The contributions are presented in a logical way, starting first with the history of chemical engineering, followed by analyses of various fields of chemical engineering and concluding with the history of various U.S. and European Departments of Chemical Engineering. I wish to thank the authors of the contributions/chapters of this volume for their enthusiastic response to my idea of publishing this volume and Dr. Gianni Astarita of the University of Naples, Italy, for his encouragement during the initial stages of this project.




Full Steam Ahead


Book Description

Mechanical Engineering was the first school of engineering to be established at Purdue University in 1882. From just 120 students, the School has grown over the last 130 years to serve over 1,800 undergraduate and graduate students annually. Originally located in Mechanics Hall, a one-story red brick building, Mechanical Engineering now has extensive facilities that include two major satellite research laboratories, Ray W. Herrick Laboratories and Maurice J. Zucrow Laboratories, named in honor of the first director. There are more than 30 additional instructional and research laboratories, including the Roger B. Gatewood wing, which opened in 2011, and increased the space available to students and faculty by 44,000 square feet. Full Steam Ahead tells the story of the School of Mechanical Engineering and looks to a future where Purdue engineers are leading the world and making advances in biotechnology, nanotechnology, robotics, design and manufacturing, and renewable energy. Distinguished alumni included in this publication range from astronauts, like Gus Grissom and Jerry Ross, to Bob Peterson, lead writer and co-director for the Oscar-winning animated film, Up.







Between Making And Knowing: Tools In The History Of Materials Research


Book Description

This book is indexed in Chemical Abstracts ServiceThis book offers a comprehensive sketch of the tools used in material research and the rich and diverse stories of how those tools came to be. We aim to give readers a sense of what tools materials researchers required in the late 20th century, and how those tools were developed and became accessible. The book is in a sense a collective biography of the components of what the philosopher of science, Ian Hacking, calls the 'instrumentarium' of materials research. Readers should gain an appreciation of the work materials researchers put into developing and using such tools, and of the tremendous variety of such tools. They should also gain some insight into the material (and hence financial) prerequisites for materials research. Materials research requires funding for the availability and maintenance of its tools; and the category of tools encompasses a broad range of substances, apparatus, institutions, and infrastructure.Between Nature and Society: Biographies of Materials (Part of A World Scientific Encyclopedia of the Development and History of Materials Science)




Teaching Engineering, Second Edition


Book Description

The majority of professors have never had a formal course in education, and the most common method for learning how to teach is on-the-job training. This represents a challenge for disciplines with ever more complex subject matter, and a lost opportunity when new active learning approaches to education are yielding dramatic improvements in student learning and retention. This book aims to cover all aspects of teaching engineering and other technical subjects. It presents both practical matters and educational theories in a format useful for both new and experienced teachers. It is organized to start with specific, practical teaching applications and then leads to psychological and educational theories. The "practical orientation" section explains how to develop objectives and then use them to enhance student learning, and the "theoretical orientation" section discusses the theoretical basis for learning/teaching and its impact on students. Written mainly for PhD students and professors in all areas of engineering, the book may be used as a text for graduate-level classes and professional workshops or by professionals who wish to read it on their own. Although the focus is engineering education, most of this book will be useful to teachers in other disciplines. Teaching is a complex human activity, so it is impossible to develop a formula that guarantees it will be excellent. However, the methods in this book will help all professors become good teachers while spending less time preparing for the classroom. This is a new edition of the well-received volume published by McGraw-Hill in 1993. It includes an entirely revised section on the Accreditation Board for Engineering and Technology (ABET) and new sections on the characteristics of great teachers, different active learning methods, the application of technology in the classroom (from clickers to intelligent tutorial systems), and how people learn.




The Hydrogen Economy


Book Description

The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.




Microintervention Strategies


Book Description

Learn how you can help combat micro and macroaggressions against socially devalued groups with this authoritative new resource Microintervention Strategies: What You Can Do to Disarm and Dismantle Indivdiual and Systemic Racism and Bias, delivers a cutting-edge exploration and extension of the concept of microinterventions to combat micro and macroaggressions targeted at marginalized groups in our society. While racial bias is the primary example used throughout the book, the author’s approach is applicable to virtually all forms of bias and discrimination, including that directed at those with disabilities, LGBTQ people, women, and others. The book calls out unfair and biased institutional policies and practices and presents strategies to help reduce the impact of sexism, heterosexism, ableism, and classism. It provides a new conceptual framework for distinguishing between the different categories of microinterventions, or individual anti-bias actions, and offers specific, concrete, and practical advice for taking a stand against micro and macroaggressions. Microintervention Strategies delivers the knowledge and skills necessary to confront individual and institutional manifestations of oppression. Readers will also enjoy: - A thorough introduction to the major conceptual distictions between micro and macroaggressions and an explanation of the manifestations, dynamics, and impact of bias on marginalized groups. - An exploration of the meaning and definition of micorinterventions, including a categorization into three types: microaffirmations, micorprotections, and microchallenges. - A review of literature that discusses the positive benefits that accrue to targets, allies, bystanders, and others when microinterventions take place. - A discussion of major barriers to acting against prejudice and discrimination. Perfect for undergraduate and graduate students taking courses in psychology, education, social work, and political science, Microintervention Strategies will also earn a place in the libraries of psychologists, educators, parents, and teachers, who hope to do their part to combat microaggressions and other forms of bias and discrimination.







Pictorial History of Chemical Engineering at Purdue University, 1911 - 2011


Book Description

This coffee-table book uses color photographs and captions to tell the story of the first one hundred years of the Purdue University School of Chemical Engineering. Formed four years after a chemical engineering curriculum was established at the University, the School grew rapidly in size and reputation. It was a leader in encouraging women and minority students to become engineers, and it produced many substantial scientific contributions. The School continues to provide expertise and solutions to the grand challenge problems that the world faces today, whether in energy, nanotechnology, biotechnology, health care, or advanced materials. Among its thirty faculty members, five are members of the National Academy of Engineering.




Engineering and Social Justice


Book Description

This book is aimed at engineering academics worldwide, who are attempting to bring social justice into their work and practice, or who would like to but don't know where to start. This is the first book dedicated specifically to University professionals on Engineering and Social Justice, an emerging and exciting area of research and practice. An international team of multidisciplinary authors share their insights and invite and inspire us to reformulate the way we work. Each chapter is based on research and yet presents the outcomes of scholarly studies in a user oriented style. We look at all three areas of an engineering academic's professional role: research, teaching and community engagement. Some of our team have created classes which help students think through their role as engineering practitioners in society. Others are focusing their research on outcomes that are socially just and for client groups who are marginalized and powerless. Yet others are consciously engaging local community groups and exploring ways in which the University might 'serve' communities at home and globally from a post-development perspective. We are additionally concerned with the student cohort and who has access to engineering studies. We take a broad social and ecological justice perspective to critique existing and explore alternative practices. This book is a handbook for any engineering academic, who wishes to develop engineering graduates as well as technologies and practices that are non-oppressive, equitable and engaged. It is also an essential reader for anyone studying in this interdisciplinary juncture of social science and engineering. Scholars using a critical theoretical lens on engineering practice and education, from Science and Technology Studies, History and Philosophy of Engineering, Engineering and Science Education will find this text invaluable.