Advances in Inorganic Chemistry


Book Description

Advances in Inorganic Chemistry Volume 58 focuses on homogeneous biomimetic oxidation catalysis. Contributions by leading experts in the field cover important advances in inorganic and bioinorganic chemistry. Contributions include diversity-based approaches to selective biomimetic oxidation catalysis; the selective conversion of hydrocarbons with H2O2 using biomimetic non-heme iron and manganese oxidation catalysis; DNA oxidation by copper and manganese complexes; influences of the ligand in copper-dioxygen complex-formation and substrate oxidations; biomimetic oxidations by dinuclear and trinuclear copper complexes. In the final contribution the authors focus on green oxidation of alcohols using biomimetic copper complexes and enzymes as catalysts. Volume 58 provides another welcomed addition to the widely acclaimed series, Advances in Inorganic Chemistry.* Includes new information on the important advances in inorganic and bioinorganic chemistry * Each chapter is fully referenced * Contains comprehensive reviews written by leading experts in the field




Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis


Book Description

The catalytic epoxidation of olefins plays an important role in the industrial production of several commodity compounds, as well as in the synthesis of many intermediates, fine chemicals, and pharmaceuticals. The scale of production ranges from millions of tons per year to a few grams per year. The diversity of catalysts is large and encompasses all the known categories of catalyst type: homogeneous, heterogeneous, and biological. This book summarizes the current status in these fields concentrating on rates, kinetics, and reaction mechanisms, but also covers broad topics including modeling, computational simulation, process concepts, spectroscopy and new catalyst development. The similarities and distinctions between the different reaction systems are compared, and the latest advances are described. - Comprehensive listing of epoxide products - Broad comparison of turnover frequencies of homogeneous, hetergeneous, main-group, biomimetic and biological catalysts - Analysis of the general strengths and weaknesses of varied catalytic systems - Detailed description of the mechanisms of reaction for classical and emerging catalysts




The Activation of Dioxygen and Homogeneous Catalytic Oxidation


Book Description

This monograph consists of the proceedings of the Fifth International Symposium on the Activation of Dioxygen and Homogeneous Catalytic Oxidation, held in College Station, Texas, March 14-19, 1993. It contains an introductory chapter authored by Professors D. H. R. Barton and D. T. Sawyer, and twenty-nine chapters describing presentations by the plenary lecturers and invited speakers. One of the invited speakers, who could not submit a manuscript for reasons beyond his control, is represented by an abstract of his lecture. Also included are abstracts of forty-seven posters contributed by participants in the symposium. Readers who may wish to know more about the subjects presented in abstract form are invited to communicate directly with the authors of the abstracts. This is the fifth international symposium that has been held on this subject. The first was hosted by the CNRS, May 21-29, 1979, in Bendor, France (on the Island of Bandol). The second meeting was organized as a NATO workshop in Padova, Italy, June 24-27, 1984. This was followed by a meeting in Tsukuba, Japan, July 12-16, 1987. The fourth symposium was held at Balatonfured, Hungary, September 10-14, 1990. The sixth meeting is scheduled to take place in Delft, The Netherlands (late Spring, 1996); the organizer and host will be Professor R. A. Sheldon.




Copper-Oxygen Chemistry


Book Description

Covers the vastly expanding subject of oxidative processes mediated by copper ions within biological systems Copper-mediated biological oxidations offer a broad range of fundamentally important and potentially practical chemical processes that cross many chemical and pharmaceutical disciplines. This newest volume in the Wiley Series on Reactive Intermediates in Chemistry and Biology is divided into three logical areas within the topic of copper/oxygen chemistry— biological systems, theory, and bioinorganic models and applications—to explore the biosphere for its highly evolved and thus efficient oxidative transformations in the discovery of new types of interactions between molecular oxygen and copper ion. Featuring a diverse collection of subject matter unified in one complete and comprehensive resource, Copper-Oxygen Chemistry probes the fundamental aspects of copper coordination chemistry, synthetic organic chemistry, and biological chemistry to reveal both the biological and chemical aspects driving the current exciting research efforts behind copper-oxygen chemistry. In addition, Copper-Oxygen Chemistry: Addresses the significantly increasing literature on oxygen-atom insertion and carbon-carbon bond-forming reactions as well as enantioselective oxidation chemistries Progresses from biological systems to spectroscopy and theory, and onward to bioinorganic models and applications Covers a wide array of reaction types such as insertion and dehydrogenation reactions that utilize the cheap, abundant, and energy-containing O2 molecule With thorough coverage by prominent authors and researchers shaping innovations in this growing field, this valuable reference is essential reading for bioinorganic chemists, as well as organic, synthetic, and pharmaceutical chemists in academia and industry.




Environmentally Sustainable Catalytic Asymmetric Oxidations


Book Description

Catalysis plays a vital role in chemical, petroleum, agriculture, polymer, electronics, pharmaceutical, and other industries. Over 90 percent of chemicals originate from catalytic processes. Toughening economic and environmental constraints have proven to be a challenge for meeting the demand of novel efficient and sustainable regio- and stereoselective catalyst systems. Environmentally Sustainable Catalytic Asymmetric Oxidations provides a comprehensive overview of existing ecologically friendly catalyst systems for various asymmetric oxidation processes. Topics include: A survey of existing transition metal-based catalyst systems for asymmetric epoxidations (AEs) with O2 and H2O2 Asymmetric sulfoxidations with H2O2 on chiral metal complexes An overview of various transition metal-catalyzed oxidative transformations with H2O2 or O2 used as the terminal oxidant Organocatalytic asymmetric oxidations Catalytic processes of stereospecific oxidations of C-H functional groups The role that oxoiron(V) intermediates play in chemo- and stereoselective oxidations catalyzed by non-heme iron complexes The book concludes with a discussion of the opportunities and problems associated with the industrial application of stereoselective processes of catalytic oxidation with H2O2 and O2. It also provides examples of processes with industrial potential. Some of the catalysts presented in this book may serve as promising alternatives for existing catalysts—progressively replacing them in manufacturing processes and ultimately making the chemical industry greener and cleaner.




Activating Unreactive Substrates


Book Description

The use of secondary interactions for the activation of non-reactive substrates constitutes a new and modern approach in catalysis. This first comprehensive treatment of this important research field covers the entire field and reveals the links between the various chemical disciplines. It thus adopts an interdisciplinary approach, making it of interest to the whole chemical community. A must for organic, inorganic, catalytic and complex chemists, as well as those working with/on organometallics.




Biomimetic Oxidations Catalyzed By Transition Metal Complexes


Book Description

Since the classic work Metal-Catalyzed Oxidations of Organic Compounds (edited by R A Sheldon and J K Kochi, 1991), no book has been devoted to advances in the field of biomimetic oxidations, which was created nearly 18 years ago. This expanding research field is covered in this volume. All the different aspects of the modeling of oxidations catalyzed by metalloenzymes are dealt with.This invaluable book will be useful to postgraduates as well as researchers in academia and industry, and will also benefit second year university students.




Iron Catalysis II


Book Description

The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.




Advances in Catalytic Activation of Dioxygen by Metal Complexes


Book Description

The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.